Cargando…
Dynamic Batch Process Monitoring Based on Time-Slice Latent Variable Correlation Analysis
[Image: see text] Batch processes are generally characterized by complex dynamics and remarkable data collinearity, thereby rendering the monitoring of such processes necessary but challenging. This paper proposes a data-driven time-slice latent variable correlation analysis-based model predictive f...
Autores principales: | Du, Le, Jin, Wenhao, Wang, Yang, Jiang, Qingchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670696/ https://www.ncbi.nlm.nih.gov/pubmed/36406484 http://dx.doi.org/10.1021/acsomega.2c04445 |
Ejemplares similares
-
Batch Process Monitoring Based on Quality-Related Time-Batch 2D Evolution Information
por: Zhao, Luping, et al.
Publicado: (2022) -
Characterization of Nanoparticle Batch-To-Batch Variability
por: Mülhopt, Sonja, et al.
Publicado: (2018) -
Quality-Relevant Process Monitoring with Concurrent
Locality-Preserving Dynamic Latent Variable Method
por: Zhang, Qi, et al.
Publicado: (2022) -
Slow Time-Varying Batch Process Quality Prediction Based on Batch Augmentation Analysis
por: Zhao, Luping, et al.
Publicado: (2022) -
Batch Processing
por: Diwekar, Urmila
Publicado: (2014)