Cargando…
Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction
[Image: see text] At present, regression modeling methods fail to achieve higher simulation accuracy, which limits the application of simulation technology in more fields such as virtual calibration and hardware-in-the-loop real-time simulation in automotive industry. After fully considering the abr...
Autores principales: | Shi, Xiuyong, Jiang, Degang, Qian, Weiwei, Liang, Yunfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670902/ https://www.ncbi.nlm.nih.gov/pubmed/36406511 http://dx.doi.org/10.1021/acsomega.2c05952 |
Ejemplares similares
-
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Autonomous materials discovery driven by Gaussian process regression with inhomogeneous measurement noise and anisotropic kernels
por: Noack, Marcus M., et al.
Publicado: (2020) -
Gaussian process regression analysis for functional data
por: Shi, Jian Qing, et al.
Publicado: (2011) -
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Lu, Chi-Ken, et al.
Publicado: (2021) -
Gaussian Process Regression Plus Method for Localization Reliability Improvement
por: Liu, Kehan, et al.
Publicado: (2016)