Cargando…

Strategy of Integrating Ultraviolet Absorption and Antimicrobial Activity in a Single Molecule: DFT Calculation and Experiment

[Image: see text] In the present study, (3,5-benzamide-2,4-dihydroxyphenyl)(phenyl) methanone (UV-CB) was synthesized and investigated as an ultraviolet (UV) absorber and a bacteriostatic agent. The optimized geometry, energy levels, charges, and UV electronic absorption bands of UV-CB in the single...

Descripción completa

Detalles Bibliográficos
Autor principal: Shan, Mingli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670906/
https://www.ncbi.nlm.nih.gov/pubmed/36406496
http://dx.doi.org/10.1021/acsomega.2c05438
Descripción
Sumario:[Image: see text] In the present study, (3,5-benzamide-2,4-dihydroxyphenyl)(phenyl) methanone (UV-CB) was synthesized and investigated as an ultraviolet (UV) absorber and a bacteriostatic agent. The optimized geometry, energy levels, charges, and UV electronic absorption bands of UV-CB in the singlet were calculated by density functional theory (DFT) calculations. The quantum chemical method was used to investigate the geometry and natural bond orbital (NBO) parameters. And the computational studies indicated that the intramolecular hydrogen bond (IMHB) was formed between the 2,4-dihydroxybenzophenone (UV-C) group and the N-(hydroxymethyl)benzamide (NBA) group, which was beneficial to the stability after the combination. The results of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests illustrated that UV-CB is a promising antibacterial agent. The successful synthesis of UV-CB with anti-UV performance and antibacterial ability evidences that DFT calculation is an available approach to design and analyze novel compounds.