Cargando…

The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery

[Image: see text] Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1–10 μm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been show...

Descripción completa

Detalles Bibliográficos
Autores principales: Batchelor, Damien V. B., Armistead, Fern J., Ingram, Nicola, Peyman, Sally A., McLaughlan, James R., Coletta, P. Louise, Evans, Stephen D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671049/
https://www.ncbi.nlm.nih.gov/pubmed/36322191
http://dx.doi.org/10.1021/acs.langmuir.2c02303
_version_ 1784832462281506816
author Batchelor, Damien V. B.
Armistead, Fern J.
Ingram, Nicola
Peyman, Sally A.
McLaughlan, James R.
Coletta, P. Louise
Evans, Stephen D.
author_facet Batchelor, Damien V. B.
Armistead, Fern J.
Ingram, Nicola
Peyman, Sally A.
McLaughlan, James R.
Coletta, P. Louise
Evans, Stephen D.
author_sort Batchelor, Damien V. B.
collection PubMed
description [Image: see text] Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1–10 μm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced size of NBs (<1 μm) promotes increased uptake and accumulation in tumor interstitial space, which can enhance their diagnostic and therapeutic performance. However, accurate characterization of NB size and concentration is challenging and may limit their translation into clinical use. Their submicron nature limits accuracy of conventional microscopy techniques, while common light scattering techniques fail to distinguish between subpopulations present in NB samples (i.e., bubbles and liposomes). Due to the difficulty in the characterization of NBs, relatively little is known about the influence of size on their therapeutic performance. In this study, we describe a novel method of using a commercially available nanoparticle tracking analysis system, to distinguish between NBs and liposomes based on their differing optical properties. We used this technique to characterize three NB populations of varying size, isolated via centrifugation, and subsequently used this to assess their potential for enhancing localized delivery. Confocal fluorescence microscopy and image analysis were used to quantify the ultrasound enhanced uptake of fluorescent dextran into live colorectal cancer cells. Our results showed that the amount of localized uptake did not follow the expected trends, in which larger NB populations out-perform smaller NBs, at matched concentration. To understand this observed behavior, the stability of each NB population was assessed. It was found that dilution of the NB samples from their stock concentration influences their stability, and it is hypothesized that both the total free lipid and interbubble distance play a role in NB lifetime, in agreement with previously proposed theories and models.
format Online
Article
Text
id pubmed-9671049
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-96710492022-11-18 The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery Batchelor, Damien V. B. Armistead, Fern J. Ingram, Nicola Peyman, Sally A. McLaughlan, James R. Coletta, P. Louise Evans, Stephen D. Langmuir [Image: see text] Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1–10 μm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced size of NBs (<1 μm) promotes increased uptake and accumulation in tumor interstitial space, which can enhance their diagnostic and therapeutic performance. However, accurate characterization of NB size and concentration is challenging and may limit their translation into clinical use. Their submicron nature limits accuracy of conventional microscopy techniques, while common light scattering techniques fail to distinguish between subpopulations present in NB samples (i.e., bubbles and liposomes). Due to the difficulty in the characterization of NBs, relatively little is known about the influence of size on their therapeutic performance. In this study, we describe a novel method of using a commercially available nanoparticle tracking analysis system, to distinguish between NBs and liposomes based on their differing optical properties. We used this technique to characterize three NB populations of varying size, isolated via centrifugation, and subsequently used this to assess their potential for enhancing localized delivery. Confocal fluorescence microscopy and image analysis were used to quantify the ultrasound enhanced uptake of fluorescent dextran into live colorectal cancer cells. Our results showed that the amount of localized uptake did not follow the expected trends, in which larger NB populations out-perform smaller NBs, at matched concentration. To understand this observed behavior, the stability of each NB population was assessed. It was found that dilution of the NB samples from their stock concentration influences their stability, and it is hypothesized that both the total free lipid and interbubble distance play a role in NB lifetime, in agreement with previously proposed theories and models. American Chemical Society 2022-11-02 2022-11-15 /pmc/articles/PMC9671049/ /pubmed/36322191 http://dx.doi.org/10.1021/acs.langmuir.2c02303 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Batchelor, Damien V. B.
Armistead, Fern J.
Ingram, Nicola
Peyman, Sally A.
McLaughlan, James R.
Coletta, P. Louise
Evans, Stephen D.
The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery
title The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery
title_full The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery
title_fullStr The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery
title_full_unstemmed The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery
title_short The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery
title_sort influence of nanobubble size and stability on ultrasound enhanced drug delivery
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671049/
https://www.ncbi.nlm.nih.gov/pubmed/36322191
http://dx.doi.org/10.1021/acs.langmuir.2c02303
work_keys_str_mv AT batchelordamienvb theinfluenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT armisteadfernj theinfluenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT ingramnicola theinfluenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT peymansallya theinfluenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT mclaughlanjamesr theinfluenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT colettaplouise theinfluenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT evansstephend theinfluenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT batchelordamienvb influenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT armisteadfernj influenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT ingramnicola influenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT peymansallya influenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT mclaughlanjamesr influenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT colettaplouise influenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery
AT evansstephend influenceofnanobubblesizeandstabilityonultrasoundenhanceddrugdelivery