Cargando…
Operationalizing a real-time scoring model to predict fall risk among older adults in the emergency department
Predictive models are increasingly being developed and implemented to improve patient care across a variety of clinical scenarios. While a body of literature exists on the development of models using existing data, less focus has been placed on practical operationalization of these models for deploy...
Autores principales: | Engstrom, Collin J., Adelaine, Sabrina, Liao, Frank, Jacobsohn, Gwen Costa, Patterson, Brian W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671211/ https://www.ncbi.nlm.nih.gov/pubmed/36405416 http://dx.doi.org/10.3389/fdgth.2022.958663 |
Ejemplares similares
-
Governance of Clinical AI applications to facilitate safe and equitable deployment in a large health system: Key elements and early successes
por: Liao, Frank, et al.
Publicado: (2022) -
Explainable Fall Risk Prediction in Older Adults Using Gait and Geriatric Assessments
por: Mishra, Anup Kumar, et al.
Publicado: (2022) -
Developing Self-Management Application of Fall Prevention Among Older Adults: A Content and Usability Evaluation
por: Mazuz, Keren, et al.
Publicado: (2020) -
Wearable Sensor Systems for Fall Risk Assessment: A Review
por: Subramaniam, Sophini, et al.
Publicado: (2022) -
Comparison of machine learning approaches for near-fall-detection with motion sensors
por: Hellmers, Sandra, et al.
Publicado: (2023)