Cargando…
A novel method to derive personalized minimum viable recommendations for type 2 diabetes prevention based on counterfactual explanations
Despite the growing availability of artificial intelligence models for predicting type 2 diabetes, there is still a lack of personalized approaches to quantify minimum viable changes in biomarkers that may help reduce the individual risk of developing disease. The aim of this article is to develop a...
Autores principales: | Lenatti, Marta, Carlevaro, Alberto, Guergachi, Aziz, Keshavjee, Karim, Mongelli, Maurizio, Paglialonga, Alessia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671330/ https://www.ncbi.nlm.nih.gov/pubmed/36395096 http://dx.doi.org/10.1371/journal.pone.0272825 |
Ejemplares similares
-
Characterization of Inclination Analysis for Predicting Onset of Heart Failure from Primary Care Electronic Medical Records
por: Guida, Federica, et al.
Publicado: (2023) -
Dual-View Single-Shot Multibox Detector at Urban Intersections: Settings and Performance Evaluation
por: Lenatti, Marta, et al.
Publicado: (2023) -
Model agnostic generation of counterfactual explanations for molecules
por: Wellawatte, Geemi P., et al.
Publicado: (2022) -
PreCoF: counterfactual explanations for fairness
por: Goethals, Sofie, et al.
Publicado: (2023) -
Prognostic Modeling and Prevention of Diabetes Using Machine Learning Technique
por: Perveen, Sajida, et al.
Publicado: (2019)