Cargando…
Probabilistic program inference in network-based epidemiological simulations
Accurate epidemiological models require parameter estimates that account for mobility patterns and social network structure. We demonstrate the effectiveness of probabilistic programming for parameter inference in these models. We consider an agent-based simulation that represents mobility networks...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671460/ https://www.ncbi.nlm.nih.gov/pubmed/36342957 http://dx.doi.org/10.1371/journal.pcbi.1010591 |
_version_ | 1784832549858574336 |
---|---|
author | Smedemark-Margulies, Niklas Walters, Robin Zimmermann, Heiko Laird, Lucas van der Loo, Christian Kaushik, Neela Caceres, Rajmonda van de Meent, Jan-Willem |
author_facet | Smedemark-Margulies, Niklas Walters, Robin Zimmermann, Heiko Laird, Lucas van der Loo, Christian Kaushik, Neela Caceres, Rajmonda van de Meent, Jan-Willem |
author_sort | Smedemark-Margulies, Niklas |
collection | PubMed |
description | Accurate epidemiological models require parameter estimates that account for mobility patterns and social network structure. We demonstrate the effectiveness of probabilistic programming for parameter inference in these models. We consider an agent-based simulation that represents mobility networks as degree-corrected stochastic block models, whose parameters we estimate from cell phone co-location data. We then use probabilistic program inference methods to approximate the distribution over disease transmission parameters conditioned on reported cases and deaths. Our experiments demonstrate that the resulting models improve the quality of fit in multiple geographies relative to baselines that do not model network topology. |
format | Online Article Text |
id | pubmed-9671460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-96714602022-11-18 Probabilistic program inference in network-based epidemiological simulations Smedemark-Margulies, Niklas Walters, Robin Zimmermann, Heiko Laird, Lucas van der Loo, Christian Kaushik, Neela Caceres, Rajmonda van de Meent, Jan-Willem PLoS Comput Biol Research Article Accurate epidemiological models require parameter estimates that account for mobility patterns and social network structure. We demonstrate the effectiveness of probabilistic programming for parameter inference in these models. We consider an agent-based simulation that represents mobility networks as degree-corrected stochastic block models, whose parameters we estimate from cell phone co-location data. We then use probabilistic program inference methods to approximate the distribution over disease transmission parameters conditioned on reported cases and deaths. Our experiments demonstrate that the resulting models improve the quality of fit in multiple geographies relative to baselines that do not model network topology. Public Library of Science 2022-11-07 /pmc/articles/PMC9671460/ /pubmed/36342957 http://dx.doi.org/10.1371/journal.pcbi.1010591 Text en © 2022 Smedemark-Margulies et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Smedemark-Margulies, Niklas Walters, Robin Zimmermann, Heiko Laird, Lucas van der Loo, Christian Kaushik, Neela Caceres, Rajmonda van de Meent, Jan-Willem Probabilistic program inference in network-based epidemiological simulations |
title | Probabilistic program inference in network-based epidemiological simulations |
title_full | Probabilistic program inference in network-based epidemiological simulations |
title_fullStr | Probabilistic program inference in network-based epidemiological simulations |
title_full_unstemmed | Probabilistic program inference in network-based epidemiological simulations |
title_short | Probabilistic program inference in network-based epidemiological simulations |
title_sort | probabilistic program inference in network-based epidemiological simulations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671460/ https://www.ncbi.nlm.nih.gov/pubmed/36342957 http://dx.doi.org/10.1371/journal.pcbi.1010591 |
work_keys_str_mv | AT smedemarkmarguliesniklas probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations AT waltersrobin probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations AT zimmermannheiko probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations AT lairdlucas probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations AT vanderloochristian probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations AT kaushikneela probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations AT caceresrajmonda probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations AT vandemeentjanwillem probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations |