Cargando…

Probabilistic program inference in network-based epidemiological simulations

Accurate epidemiological models require parameter estimates that account for mobility patterns and social network structure. We demonstrate the effectiveness of probabilistic programming for parameter inference in these models. We consider an agent-based simulation that represents mobility networks...

Descripción completa

Detalles Bibliográficos
Autores principales: Smedemark-Margulies, Niklas, Walters, Robin, Zimmermann, Heiko, Laird, Lucas, van der Loo, Christian, Kaushik, Neela, Caceres, Rajmonda, van de Meent, Jan-Willem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671460/
https://www.ncbi.nlm.nih.gov/pubmed/36342957
http://dx.doi.org/10.1371/journal.pcbi.1010591
_version_ 1784832549858574336
author Smedemark-Margulies, Niklas
Walters, Robin
Zimmermann, Heiko
Laird, Lucas
van der Loo, Christian
Kaushik, Neela
Caceres, Rajmonda
van de Meent, Jan-Willem
author_facet Smedemark-Margulies, Niklas
Walters, Robin
Zimmermann, Heiko
Laird, Lucas
van der Loo, Christian
Kaushik, Neela
Caceres, Rajmonda
van de Meent, Jan-Willem
author_sort Smedemark-Margulies, Niklas
collection PubMed
description Accurate epidemiological models require parameter estimates that account for mobility patterns and social network structure. We demonstrate the effectiveness of probabilistic programming for parameter inference in these models. We consider an agent-based simulation that represents mobility networks as degree-corrected stochastic block models, whose parameters we estimate from cell phone co-location data. We then use probabilistic program inference methods to approximate the distribution over disease transmission parameters conditioned on reported cases and deaths. Our experiments demonstrate that the resulting models improve the quality of fit in multiple geographies relative to baselines that do not model network topology.
format Online
Article
Text
id pubmed-9671460
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-96714602022-11-18 Probabilistic program inference in network-based epidemiological simulations Smedemark-Margulies, Niklas Walters, Robin Zimmermann, Heiko Laird, Lucas van der Loo, Christian Kaushik, Neela Caceres, Rajmonda van de Meent, Jan-Willem PLoS Comput Biol Research Article Accurate epidemiological models require parameter estimates that account for mobility patterns and social network structure. We demonstrate the effectiveness of probabilistic programming for parameter inference in these models. We consider an agent-based simulation that represents mobility networks as degree-corrected stochastic block models, whose parameters we estimate from cell phone co-location data. We then use probabilistic program inference methods to approximate the distribution over disease transmission parameters conditioned on reported cases and deaths. Our experiments demonstrate that the resulting models improve the quality of fit in multiple geographies relative to baselines that do not model network topology. Public Library of Science 2022-11-07 /pmc/articles/PMC9671460/ /pubmed/36342957 http://dx.doi.org/10.1371/journal.pcbi.1010591 Text en © 2022 Smedemark-Margulies et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Smedemark-Margulies, Niklas
Walters, Robin
Zimmermann, Heiko
Laird, Lucas
van der Loo, Christian
Kaushik, Neela
Caceres, Rajmonda
van de Meent, Jan-Willem
Probabilistic program inference in network-based epidemiological simulations
title Probabilistic program inference in network-based epidemiological simulations
title_full Probabilistic program inference in network-based epidemiological simulations
title_fullStr Probabilistic program inference in network-based epidemiological simulations
title_full_unstemmed Probabilistic program inference in network-based epidemiological simulations
title_short Probabilistic program inference in network-based epidemiological simulations
title_sort probabilistic program inference in network-based epidemiological simulations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671460/
https://www.ncbi.nlm.nih.gov/pubmed/36342957
http://dx.doi.org/10.1371/journal.pcbi.1010591
work_keys_str_mv AT smedemarkmarguliesniklas probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations
AT waltersrobin probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations
AT zimmermannheiko probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations
AT lairdlucas probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations
AT vanderloochristian probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations
AT kaushikneela probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations
AT caceresrajmonda probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations
AT vandemeentjanwillem probabilisticprograminferenceinnetworkbasedepidemiologicalsimulations