Cargando…
Dynamic fair balancing of COVID-19 patients over hospitals based on forecasts of bed occupancy()
This paper introduces mathematical models that support dynamic fair balancing of COVID-19 patients over hospitals in a region and across regions. Patient flow is captured in an infinite server queueing network. The dynamic fair balancing model within a region is a load balancing model incorporating...
Autores principales: | Dijkstra, Sander, Baas, Stef, Braaksma, Aleida, Boucherie, Richard J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671547/ https://www.ncbi.nlm.nih.gov/pubmed/36415506 http://dx.doi.org/10.1016/j.omega.2022.102801 |
Ejemplares similares
-
Real-time forecasting of COVID-19 bed occupancy in wards and Intensive Care Units
por: Baas, Stef, et al.
Publicado: (2021) -
Recursive neural networks in hospital bed occupancy forecasting
por: Kutafina, Ekaterina, et al.
Publicado: (2019) -
Artificial neural networks for short-term forecasting of cases, deaths, and hospital beds occupancy in the COVID-19 pandemic at the Brazilian Amazon
por: Braga, Marcus de Barros, et al.
Publicado: (2021) -
Algorithmic fairness in pandemic forecasting: lessons from COVID-19
por: Tsai, Thomas C., et al.
Publicado: (2022) -
Forecasting local hospital bed demand for COVID-19 using on-request simulations
por: Kociurzynski, Raisa, et al.
Publicado: (2023)