Cargando…
ColoRectalCADx: Expeditious Recognition of Colorectal Cancer with Integrated Convolutional Neural Networks and Visual Explanations Using Mixed Dataset Evidence
Colorectal cancer typically affects the gastrointestinal tract within the human body. Colonoscopy is one of the most accurate methods of detecting cancer. The current system facilitates the identification of cancer by computer-assisted diagnosis (CADx) systems with a limited number of deep learning...
Autores principales: | Narasimha Raju, Akella S., Jayavel, Kayalvizhi, Rajalakshmi, T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671728/ https://www.ncbi.nlm.nih.gov/pubmed/36404909 http://dx.doi.org/10.1155/2022/8723957 |
Ejemplares similares
-
Dexterous Identification of Carcinoma through ColoRectalCADx with Dichotomous Fusion CNN and UNet Semantic Segmentation
por: Narasimha Raju, Akella S., et al.
Publicado: (2022) -
EnsemDeepCADx: Empowering Colorectal Cancer Diagnosis with Mixed-Dataset Features and Ensemble Fusion CNNs on Evidence-Based CKHK-22 Dataset
por: Raju, Akella Subrahmanya Narasimha, et al.
Publicado: (2023) -
Review of Gastric and Colo-rectal Cancers
por: Bush, H.
Publicado: (1978) -
Laparoscopic colo-rectal surgery in octogenarians
por: Martina, Coletta, et al.
Publicado: (2009) -
GASTRO-CADx: a three stages framework for diagnosing gastrointestinal diseases
por: Attallah, Omneya, et al.
Publicado: (2021)