Cargando…
Circadian transcriptional pathway atlas highlights a proteasome switch in intermittent fasting
While intermittent fasting is a safe strategy to benefit health, it remains unclear whether a “timer” exists in vivo to record fasting duration and trigger a transcriptional switch. Here, we map a circadian transcriptional pathway atlas from 600 samples across four metabolic tissues of mice under fi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671760/ https://www.ncbi.nlm.nih.gov/pubmed/36288692 http://dx.doi.org/10.1016/j.celrep.2022.111547 |
Sumario: | While intermittent fasting is a safe strategy to benefit health, it remains unclear whether a “timer” exists in vivo to record fasting duration and trigger a transcriptional switch. Here, we map a circadian transcriptional pathway atlas from 600 samples across four metabolic tissues of mice under five feeding regimens. Results show that 95.6% of detected canonical pathways are rhythmic in a tissue-specific and feeding-regimen-specific manner, while only less than 25% of them induce changes in transcriptional function. Fasting for 16 h initiates a circadian resonance of 43 pathways in the liver, and the resonance punctually switches following refeeding. The hepatic proteasome coordinates the resonance, and most genes encoding proteasome subunits display a 16-h fasting-dependent transcriptional switch. These findings indicate that the hepatic proteasome may serve as a fasting timer and a coordinator of pathway transcriptional resonance, which provide a target for revealing the underlying mechanism of intermittent fasting. |
---|