Cargando…

Rare and common genetic determinants of metabolic individuality and their effects on human health

Garrod’s concept of ‘chemical individuality’ has contributed to comprehension of the molecular origins of human diseases. Untargeted high-throughput metabolomic technologies provide an in-depth snapshot of human metabolism at scale. We studied the genetic architecture of the human plasma metabolome...

Descripción completa

Detalles Bibliográficos
Autores principales: Surendran, Praveen, Stewart, Isobel D., Au Yeung, Victoria P. W., Pietzner, Maik, Raffler, Johannes, Wörheide, Maria A., Li, Chen, Smith, Rebecca F., Wittemans, Laura B. L., Bomba, Lorenzo, Menni, Cristina, Zierer, Jonas, Rossi, Niccolò, Sheridan, Patricia A., Watkins, Nicholas A., Mangino, Massimo, Hysi, Pirro G., Di Angelantonio, Emanuele, Falchi, Mario, Spector, Tim D., Soranzo, Nicole, Michelotti, Gregory A., Arlt, Wiebke, Lotta, Luca A., Denaxas, Spiros, Hemingway, Harry, Gamazon, Eric R., Howson, Joanna M. M., Wood, Angela M., Danesh, John, Wareham, Nicholas J., Kastenmüller, Gabi, Fauman, Eric B., Suhre, Karsten, Butterworth, Adam S., Langenberg, Claudia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671801/
https://www.ncbi.nlm.nih.gov/pubmed/36357675
http://dx.doi.org/10.1038/s41591-022-02046-0
Descripción
Sumario:Garrod’s concept of ‘chemical individuality’ has contributed to comprehension of the molecular origins of human diseases. Untargeted high-throughput metabolomic technologies provide an in-depth snapshot of human metabolism at scale. We studied the genetic architecture of the human plasma metabolome using 913 metabolites assayed in 19,994 individuals and identified 2,599 variant–metabolite associations (P < 1.25 × 10(−11)) within 330 genomic regions, with rare variants (minor allele frequency ≤ 1%) explaining 9.4% of associations. Jointly modeling metabolites in each region, we identified 423 regional, co-regulated, variant–metabolite clusters called genetically influenced metabotypes. We assigned causal genes for 62.4% of these genetically influenced metabotypes, providing new insights into fundamental metabolite physiology and clinical relevance, including metabolite-guided discovery of potential adverse drug effects (DPYD and SRD5A2). We show strong enrichment of inborn errors of metabolism-causing genes, with examples of metabolite associations and clinical phenotypes of non-pathogenic variant carriers matching characteristics of the inborn errors of metabolism. Systematic, phenotypic follow-up of metabolite-specific genetic scores revealed multiple potential etiological relationships.