Cargando…

Metabolomic profiles predict individual multidisease outcomes

Risk stratification is critical for the early identification of high-risk individuals and disease prevention. Here we explored the potential of nuclear magnetic resonance (NMR) spectroscopy-derived metabolomic profiles to inform on multidisease risk beyond conventional clinical predictors for the on...

Descripción completa

Detalles Bibliográficos
Autores principales: Buergel, Thore, Steinfeldt, Jakob, Ruyoga, Greg, Pietzner, Maik, Bizzarri, Daniele, Vojinovic, Dina, Upmeier zu Belzen, Julius, Loock, Lukas, Kittner, Paul, Christmann, Lara, Hollmann, Noah, Strangalies, Henrik, Braunger, Jana M., Wild, Benjamin, Chiesa, Scott T., Spranger, Joachim, Klostermann, Fabian, van den Akker, Erik B., Trompet, Stella, Mooijaart, Simon P., Sattar, Naveed, Jukema, J. Wouter, Lavrijssen, Birgit, Kavousi, Maryam, Ghanbari, Mohsen, Ikram, Mohammad A., Slagboom, Eline, Kivimaki, Mika, Langenberg, Claudia, Deanfield, John, Eils, Roland, Landmesser, Ulf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671812/
https://www.ncbi.nlm.nih.gov/pubmed/36138150
http://dx.doi.org/10.1038/s41591-022-01980-3
_version_ 1784832628880310272
author Buergel, Thore
Steinfeldt, Jakob
Ruyoga, Greg
Pietzner, Maik
Bizzarri, Daniele
Vojinovic, Dina
Upmeier zu Belzen, Julius
Loock, Lukas
Kittner, Paul
Christmann, Lara
Hollmann, Noah
Strangalies, Henrik
Braunger, Jana M.
Wild, Benjamin
Chiesa, Scott T.
Spranger, Joachim
Klostermann, Fabian
van den Akker, Erik B.
Trompet, Stella
Mooijaart, Simon P.
Sattar, Naveed
Jukema, J. Wouter
Lavrijssen, Birgit
Kavousi, Maryam
Ghanbari, Mohsen
Ikram, Mohammad A.
Slagboom, Eline
Kivimaki, Mika
Langenberg, Claudia
Deanfield, John
Eils, Roland
Landmesser, Ulf
author_facet Buergel, Thore
Steinfeldt, Jakob
Ruyoga, Greg
Pietzner, Maik
Bizzarri, Daniele
Vojinovic, Dina
Upmeier zu Belzen, Julius
Loock, Lukas
Kittner, Paul
Christmann, Lara
Hollmann, Noah
Strangalies, Henrik
Braunger, Jana M.
Wild, Benjamin
Chiesa, Scott T.
Spranger, Joachim
Klostermann, Fabian
van den Akker, Erik B.
Trompet, Stella
Mooijaart, Simon P.
Sattar, Naveed
Jukema, J. Wouter
Lavrijssen, Birgit
Kavousi, Maryam
Ghanbari, Mohsen
Ikram, Mohammad A.
Slagboom, Eline
Kivimaki, Mika
Langenberg, Claudia
Deanfield, John
Eils, Roland
Landmesser, Ulf
author_sort Buergel, Thore
collection PubMed
description Risk stratification is critical for the early identification of high-risk individuals and disease prevention. Here we explored the potential of nuclear magnetic resonance (NMR) spectroscopy-derived metabolomic profiles to inform on multidisease risk beyond conventional clinical predictors for the onset of 24 common conditions, including metabolic, vascular, respiratory, musculoskeletal and neurological diseases and cancers. Specifically, we trained a neural network to learn disease-specific metabolomic states from 168 circulating metabolic markers measured in 117,981 participants with ~1.4 million person-years of follow-up from the UK Biobank and validated the model in four independent cohorts. We found metabolomic states to be associated with incident event rates in all the investigated conditions, except breast cancer. For 10-year outcome prediction for 15 endpoints, with and without established metabolic contribution, a combination of age and sex and the metabolomic state equaled or outperformed established predictors. Moreover, metabolomic state added predictive information over comprehensive clinical variables for eight common diseases, including type 2 diabetes, dementia and heart failure. Decision curve analyses showed that predictive improvements translated into clinical utility for a wide range of potential decision thresholds. Taken together, our study demonstrates both the potential and limitations of NMR-derived metabolomic profiles as a multidisease assay to inform on the risk of many common diseases simultaneously.
format Online
Article
Text
id pubmed-9671812
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-96718122022-11-19 Metabolomic profiles predict individual multidisease outcomes Buergel, Thore Steinfeldt, Jakob Ruyoga, Greg Pietzner, Maik Bizzarri, Daniele Vojinovic, Dina Upmeier zu Belzen, Julius Loock, Lukas Kittner, Paul Christmann, Lara Hollmann, Noah Strangalies, Henrik Braunger, Jana M. Wild, Benjamin Chiesa, Scott T. Spranger, Joachim Klostermann, Fabian van den Akker, Erik B. Trompet, Stella Mooijaart, Simon P. Sattar, Naveed Jukema, J. Wouter Lavrijssen, Birgit Kavousi, Maryam Ghanbari, Mohsen Ikram, Mohammad A. Slagboom, Eline Kivimaki, Mika Langenberg, Claudia Deanfield, John Eils, Roland Landmesser, Ulf Nat Med Article Risk stratification is critical for the early identification of high-risk individuals and disease prevention. Here we explored the potential of nuclear magnetic resonance (NMR) spectroscopy-derived metabolomic profiles to inform on multidisease risk beyond conventional clinical predictors for the onset of 24 common conditions, including metabolic, vascular, respiratory, musculoskeletal and neurological diseases and cancers. Specifically, we trained a neural network to learn disease-specific metabolomic states from 168 circulating metabolic markers measured in 117,981 participants with ~1.4 million person-years of follow-up from the UK Biobank and validated the model in four independent cohorts. We found metabolomic states to be associated with incident event rates in all the investigated conditions, except breast cancer. For 10-year outcome prediction for 15 endpoints, with and without established metabolic contribution, a combination of age and sex and the metabolomic state equaled or outperformed established predictors. Moreover, metabolomic state added predictive information over comprehensive clinical variables for eight common diseases, including type 2 diabetes, dementia and heart failure. Decision curve analyses showed that predictive improvements translated into clinical utility for a wide range of potential decision thresholds. Taken together, our study demonstrates both the potential and limitations of NMR-derived metabolomic profiles as a multidisease assay to inform on the risk of many common diseases simultaneously. Nature Publishing Group US 2022-09-22 2022 /pmc/articles/PMC9671812/ /pubmed/36138150 http://dx.doi.org/10.1038/s41591-022-01980-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Buergel, Thore
Steinfeldt, Jakob
Ruyoga, Greg
Pietzner, Maik
Bizzarri, Daniele
Vojinovic, Dina
Upmeier zu Belzen, Julius
Loock, Lukas
Kittner, Paul
Christmann, Lara
Hollmann, Noah
Strangalies, Henrik
Braunger, Jana M.
Wild, Benjamin
Chiesa, Scott T.
Spranger, Joachim
Klostermann, Fabian
van den Akker, Erik B.
Trompet, Stella
Mooijaart, Simon P.
Sattar, Naveed
Jukema, J. Wouter
Lavrijssen, Birgit
Kavousi, Maryam
Ghanbari, Mohsen
Ikram, Mohammad A.
Slagboom, Eline
Kivimaki, Mika
Langenberg, Claudia
Deanfield, John
Eils, Roland
Landmesser, Ulf
Metabolomic profiles predict individual multidisease outcomes
title Metabolomic profiles predict individual multidisease outcomes
title_full Metabolomic profiles predict individual multidisease outcomes
title_fullStr Metabolomic profiles predict individual multidisease outcomes
title_full_unstemmed Metabolomic profiles predict individual multidisease outcomes
title_short Metabolomic profiles predict individual multidisease outcomes
title_sort metabolomic profiles predict individual multidisease outcomes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671812/
https://www.ncbi.nlm.nih.gov/pubmed/36138150
http://dx.doi.org/10.1038/s41591-022-01980-3
work_keys_str_mv AT buergelthore metabolomicprofilespredictindividualmultidiseaseoutcomes
AT steinfeldtjakob metabolomicprofilespredictindividualmultidiseaseoutcomes
AT ruyogagreg metabolomicprofilespredictindividualmultidiseaseoutcomes
AT pietznermaik metabolomicprofilespredictindividualmultidiseaseoutcomes
AT bizzarridaniele metabolomicprofilespredictindividualmultidiseaseoutcomes
AT vojinovicdina metabolomicprofilespredictindividualmultidiseaseoutcomes
AT upmeierzubelzenjulius metabolomicprofilespredictindividualmultidiseaseoutcomes
AT loocklukas metabolomicprofilespredictindividualmultidiseaseoutcomes
AT kittnerpaul metabolomicprofilespredictindividualmultidiseaseoutcomes
AT christmannlara metabolomicprofilespredictindividualmultidiseaseoutcomes
AT hollmannnoah metabolomicprofilespredictindividualmultidiseaseoutcomes
AT strangalieshenrik metabolomicprofilespredictindividualmultidiseaseoutcomes
AT braungerjanam metabolomicprofilespredictindividualmultidiseaseoutcomes
AT wildbenjamin metabolomicprofilespredictindividualmultidiseaseoutcomes
AT chiesascottt metabolomicprofilespredictindividualmultidiseaseoutcomes
AT sprangerjoachim metabolomicprofilespredictindividualmultidiseaseoutcomes
AT klostermannfabian metabolomicprofilespredictindividualmultidiseaseoutcomes
AT vandenakkererikb metabolomicprofilespredictindividualmultidiseaseoutcomes
AT trompetstella metabolomicprofilespredictindividualmultidiseaseoutcomes
AT mooijaartsimonp metabolomicprofilespredictindividualmultidiseaseoutcomes
AT sattarnaveed metabolomicprofilespredictindividualmultidiseaseoutcomes
AT jukemajwouter metabolomicprofilespredictindividualmultidiseaseoutcomes
AT lavrijssenbirgit metabolomicprofilespredictindividualmultidiseaseoutcomes
AT kavousimaryam metabolomicprofilespredictindividualmultidiseaseoutcomes
AT ghanbarimohsen metabolomicprofilespredictindividualmultidiseaseoutcomes
AT ikrammohammada metabolomicprofilespredictindividualmultidiseaseoutcomes
AT slagboomeline metabolomicprofilespredictindividualmultidiseaseoutcomes
AT kivimakimika metabolomicprofilespredictindividualmultidiseaseoutcomes
AT langenbergclaudia metabolomicprofilespredictindividualmultidiseaseoutcomes
AT deanfieldjohn metabolomicprofilespredictindividualmultidiseaseoutcomes
AT eilsroland metabolomicprofilespredictindividualmultidiseaseoutcomes
AT landmesserulf metabolomicprofilespredictindividualmultidiseaseoutcomes