Cargando…
An interpretable RL framework for pre-deployment modeling in ICU hypotension management
Computational methods from reinforcement learning have shown promise in inferring treatment strategies for hypotension management and other clinical decision-making challenges. Unfortunately, the resulting models are often difficult for clinicians to interpret, making clinical inspection and validat...
Autores principales: | Zhang, Kristine, Wang, Henry, Du, Jianzhun, Chu, Brian, Arévalo, Aldo Robles, Kindle, Ryan, Celi, Leo Anthony, Doshi-Velez, Finale |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671896/ https://www.ncbi.nlm.nih.gov/pubmed/36396808 http://dx.doi.org/10.1038/s41746-022-00708-4 |
Ejemplares similares
-
The myth of generalisability in clinical research and machine learning in health care
por: Futoma, Joseph, et al.
Publicado: (2020) -
Predicting intervention onset in the ICU with switching state space models
por: Ghassemi, Marzyeh, et al.
Publicado: (2017) -
Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines
por: Trella, Anna L., et al.
Publicado: (2022) -
Acetaminophen-induced hypotension in the surgical ICU
por: Stoecker, Z
Publicado: (2014) -
Generalization in Clinical Prediction Models: The Blessing and Curse of Measurement Indicator Variables
por: Futoma, Joseph, et al.
Publicado: (2021)