Cargando…
Predicting survival of glioblastoma from automatic whole-brain and tumor segmentation of MR images
Survival prediction models can potentially be used to guide treatment of glioblastoma patients. However, currently available MR imaging biomarkers holding prognostic information are often challenging to interpret, have difficulties generalizing across data acquisitions, or are only applicable to pre...
Autores principales: | Pálsson, Sveinn, Cerri, Stefano, Poulsen, Hans Skovgaard, Urup, Thomas, Law, Ian, Van Leemput, Koen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671967/ https://www.ncbi.nlm.nih.gov/pubmed/36396681 http://dx.doi.org/10.1038/s41598-022-19223-3 |
Ejemplares similares
-
The impact of bevacizumab treatment on survival and quality of life in newly diagnosed glioblastoma patients
por: Poulsen, Hans Skovgaard, et al.
Publicado: (2014) -
The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma
por: Poulsen, Sidsel Højklint, et al.
Publicado: (2016) -
An open-source tool for longitudinal whole-brain and white matter lesion segmentation
por: Cerri, Stefano, et al.
Publicado: (2023) -
A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis
por: Cerri, Stefano, et al.
Publicado: (2020) -
Implementing targeted therapies in the treatment of glioblastoma: Previous shortcomings, future promises, and a multimodal strategy recommendation
por: Fougner, Vincent, et al.
Publicado: (2022)