Cargando…
Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography
Deep learning allows automatic segmentation of teeth on cone beam computed tomography (CBCT). However, the segmentation performance of deep learning varies among different training strategies. Our aim was to propose a 3.5D U-Net to improve the performance of the U-Net in segmenting teeth on CBCT. Th...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672125/ https://www.ncbi.nlm.nih.gov/pubmed/36396696 http://dx.doi.org/10.1038/s41598-022-23901-7 |