Cargando…
Uncertainty-aware mixed-variable machine learning for materials design
Data-driven design shows the promise of accelerating materials discovery but is challenging due to the prohibitive cost of searching the vast design space of chemistry, structure, and synthesis methods. Bayesian optimization (BO) employs uncertainty-aware machine learning models to select promising...
Autores principales: | Zhang, Hengrui, Chen, Wei (Wayne), Iyer, Akshay, Apley, Daniel W., Chen, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672324/ https://www.ncbi.nlm.nih.gov/pubmed/36396678 http://dx.doi.org/10.1038/s41598-022-23431-2 |
Ejemplares similares
-
Bayesian Optimization for Materials Design with Mixed Quantitative and Qualitative Variables
por: Zhang, Yichi, et al.
Publicado: (2020) -
Uncertainty Prediction for Machine Learning Models
of Material Properties
por: Tavazza, Francesca, et al.
Publicado: (2021) -
Rapid prediction of full spin systems using uncertainty-aware machine learning
por: Williams, Jake, et al.
Publicado: (2023) -
Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges
por: Chen, Guang, et al.
Publicado: (2020) -
Inverse Design of Materials by Machine Learning
por: Wang, Jia, et al.
Publicado: (2022)