Cargando…
iProm-phage: A two-layer model to identify phage promoters and their types using a convolutional neural network
The increased interest in phages as antibacterial agents has resulted in a rise in the number of sequenced phage genomes, necessitating the development of user-friendly bioinformatics tools for genome annotation. A promoter is a DNA sequence that is used in the annotation of phage genomes. In this s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672459/ https://www.ncbi.nlm.nih.gov/pubmed/36406389 http://dx.doi.org/10.3389/fmicb.2022.1061122 |
_version_ | 1784832739783999488 |
---|---|
author | Shujaat, Muhammad Jin, Joe Sung Tayara, Hilal Chong, Kil To |
author_facet | Shujaat, Muhammad Jin, Joe Sung Tayara, Hilal Chong, Kil To |
author_sort | Shujaat, Muhammad |
collection | PubMed |
description | The increased interest in phages as antibacterial agents has resulted in a rise in the number of sequenced phage genomes, necessitating the development of user-friendly bioinformatics tools for genome annotation. A promoter is a DNA sequence that is used in the annotation of phage genomes. In this study we proposed a two layer model called “iProm-phage” for the prediction and classification of phage promoters. Model first layer identify query sequence as promoter or non-promoter and if the query sequence is predicted as promoter then model second layer classify it as phage or host promoter. Furthermore, rather than using non-coding regions of the genome as a negative set, we created a more challenging negative dataset using promoter sequences. The presented approach improves discrimination while decreasing the frequency of erroneous positive predictions. For feature selection, we investigated 10 distinct feature encoding approaches and utilized them with several machine-learning algorithms and a 1-D convolutional neural network model. We discovered that the one-hot encoding approach and the CNN model outperformed based on performance metrics. Based on the results of the 5-fold cross validation, the proposed predictor has a high potential. Furthermore, to make it easier for other experimental scientists to obtain the results they require, we set up a freely accessible and user-friendly web server at http://nsclbio.jbnu.ac.kr/tools/iProm-phage/. |
format | Online Article Text |
id | pubmed-9672459 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96724592022-11-19 iProm-phage: A two-layer model to identify phage promoters and their types using a convolutional neural network Shujaat, Muhammad Jin, Joe Sung Tayara, Hilal Chong, Kil To Front Microbiol Microbiology The increased interest in phages as antibacterial agents has resulted in a rise in the number of sequenced phage genomes, necessitating the development of user-friendly bioinformatics tools for genome annotation. A promoter is a DNA sequence that is used in the annotation of phage genomes. In this study we proposed a two layer model called “iProm-phage” for the prediction and classification of phage promoters. Model first layer identify query sequence as promoter or non-promoter and if the query sequence is predicted as promoter then model second layer classify it as phage or host promoter. Furthermore, rather than using non-coding regions of the genome as a negative set, we created a more challenging negative dataset using promoter sequences. The presented approach improves discrimination while decreasing the frequency of erroneous positive predictions. For feature selection, we investigated 10 distinct feature encoding approaches and utilized them with several machine-learning algorithms and a 1-D convolutional neural network model. We discovered that the one-hot encoding approach and the CNN model outperformed based on performance metrics. Based on the results of the 5-fold cross validation, the proposed predictor has a high potential. Furthermore, to make it easier for other experimental scientists to obtain the results they require, we set up a freely accessible and user-friendly web server at http://nsclbio.jbnu.ac.kr/tools/iProm-phage/. Frontiers Media S.A. 2022-11-04 /pmc/articles/PMC9672459/ /pubmed/36406389 http://dx.doi.org/10.3389/fmicb.2022.1061122 Text en Copyright © 2022 Shujaat, Jin, Tayara and Chong. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Shujaat, Muhammad Jin, Joe Sung Tayara, Hilal Chong, Kil To iProm-phage: A two-layer model to identify phage promoters and their types using a convolutional neural network |
title | iProm-phage: A two-layer model to identify phage promoters and their types using a convolutional neural network |
title_full | iProm-phage: A two-layer model to identify phage promoters and their types using a convolutional neural network |
title_fullStr | iProm-phage: A two-layer model to identify phage promoters and their types using a convolutional neural network |
title_full_unstemmed | iProm-phage: A two-layer model to identify phage promoters and their types using a convolutional neural network |
title_short | iProm-phage: A two-layer model to identify phage promoters and their types using a convolutional neural network |
title_sort | iprom-phage: a two-layer model to identify phage promoters and their types using a convolutional neural network |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672459/ https://www.ncbi.nlm.nih.gov/pubmed/36406389 http://dx.doi.org/10.3389/fmicb.2022.1061122 |
work_keys_str_mv | AT shujaatmuhammad ipromphageatwolayermodeltoidentifyphagepromotersandtheirtypesusingaconvolutionalneuralnetwork AT jinjoesung ipromphageatwolayermodeltoidentifyphagepromotersandtheirtypesusingaconvolutionalneuralnetwork AT tayarahilal ipromphageatwolayermodeltoidentifyphagepromotersandtheirtypesusingaconvolutionalneuralnetwork AT chongkilto ipromphageatwolayermodeltoidentifyphagepromotersandtheirtypesusingaconvolutionalneuralnetwork |