Cargando…
Predicting the tissue outcome of acute ischemic stroke from acute 4D computed tomography perfusion imaging using temporal features and deep learning
Predicting follow-up lesions from baseline CT perfusion (CTP) datasets in acute ischemic stroke patients is important for clinical decision making. Deep convolutional networks (DCNs) are assumed to be the current state-of-the-art for this task. However, many DCN classifiers have not been validated a...
Autores principales: | Winder, Anthony J., Wilms, Matthias, Amador, Kimberly, Flottmann, Fabian, Fiehler, Jens, Forkert, Nils D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672821/ https://www.ncbi.nlm.nih.gov/pubmed/36408399 http://dx.doi.org/10.3389/fnins.2022.1009654 |
Ejemplares similares
-
Treatment Efficacy Analysis in Acute Ischemic Stroke Patients Using In Silico Modeling Based on Machine Learning: A Proof-of-Principle
por: Winder, Anthony, et al.
Publicado: (2021) -
Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients
por: Winder, Anthony J., et al.
Publicado: (2019) -
Impact of Severe Extracranial ICA Stenosis on MRI Perfusion and Diffusion Parameters in Acute Ischemic Stroke
por: Kaesemann, Philipp, et al.
Publicado: (2014) -
Localized prediction of tissue outcome in acute ischemic stroke patients using diffusion- and perfusion-weighted MRI datasets
por: Grosser, Malte, et al.
Publicado: (2020) -
CT-perfusion stroke imaging: a threshold free probabilistic approach to predict infarct volume compared to traditional ischemic thresholds
por: Flottmann, Fabian, et al.
Publicado: (2017)