Cargando…
Persistence of hippocampal and striatal multivoxel patterns during awake rest after motor sequence learning
Memory consolidation, the process by which newly encoded and fragile memories become more robust, is thought to be supported by the reactivation of brain regions - including the hippocampus - during post-learning rest. While hippocampal reactivations have been demonstrated in humans in the declarati...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672934/ https://www.ncbi.nlm.nih.gov/pubmed/36404923 http://dx.doi.org/10.1016/j.isci.2022.105498 |
Sumario: | Memory consolidation, the process by which newly encoded and fragile memories become more robust, is thought to be supported by the reactivation of brain regions - including the hippocampus - during post-learning rest. While hippocampal reactivations have been demonstrated in humans in the declarative memory domain, it remains unknown whether such a process takes place after motor learning. Using multivariate analyses of task-related and resting state fMRI data, here we show that patterns of brain activity within both the hippocampus and striatum elicited during motor learning persist into post-learning rest, indicative of the reactivation of learning-related neural activity patterns. Moreover, results indicate that hippocampal reactivation reflects the spatial representation of the learned motor sequence. These results thus provide insights into the functional significance of neural reactivation after motor sequence learning. |
---|