Cargando…

k-Space Hyperspectral Imaging by a Birefringent Common-Path Interferometer

[Image: see text] Fourier-plane microscopy is a powerful tool for measuring the angular optical response of a plethora of materials and photonic devices. Among them, optical microcavities feature distinctive energy-momentum dispersions, crucial for a broad range of fundamental studies and applicatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Genco, Armando, Cruciano, Cristina, Corti, Matteo, McGhee, Kirsty E., Ardini, Benedetto, Sortino, Luca, Hüttenhofer, Ludwig, Virgili, Tersilla, Lidzey, David G., Maier, Stefan A., Bassi, Andrea, Valentini, Gianluca, Cerullo, Giulio, Manzoni, Cristian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673149/
https://www.ncbi.nlm.nih.gov/pubmed/36411818
http://dx.doi.org/10.1021/acsphotonics.2c00959
Descripción
Sumario:[Image: see text] Fourier-plane microscopy is a powerful tool for measuring the angular optical response of a plethora of materials and photonic devices. Among them, optical microcavities feature distinctive energy-momentum dispersions, crucial for a broad range of fundamental studies and applications. However, measuring the whole momentum space (k-space) with sufficient spectral resolution using standard spectroscopic techniques is challenging, requiring long and alignment-sensitive scans. Here, we introduce a k-space hyperspectral microscope, which uses a common-path birefringent interferometer to image photoluminescent organic microcavities, obtaining an angle- and wavelength-resolved view of the samples in only one measurement. The exceptional combination of angular and spectral resolution of our technique allows us to reconstruct a three-dimensional (3D) map of the cavity dispersion in the energy-momentum space, revealing the polarization-dependent behavior of the resonant cavity modes. Furthermore, we apply our technique for the characterization of a dielectric nanodisk metasurface, evidencing the angular and spectral behavior of its anapole mode. This approach is able to provide a complete optical characterization for materials and devices with nontrivial angle-/wavelength-dependent properties, fundamental for future developments in the fields of topological photonics and optical metamaterials.