Cargando…
Distraction detection of lectures in e-learning using machine learning based on human facial features and postural information
While e-learning lectures allow students to learn at their own pace, it is difficult to manage students’ concentration, which prevents them from receiving valuable information from lectures. Therefore, we propose a method for detecting student distraction during e-learning lectures using machine lea...
Autores principales: | Betto, Iku, Hatano, Ryo, Nishiyama, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Japan
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673224/ https://www.ncbi.nlm.nih.gov/pubmed/36415749 http://dx.doi.org/10.1007/s10015-022-00809-z |
Ejemplares similares
-
Detecting deception using machine learning with facial expressions and pulse rate
por: Tsuchiya, Kento, et al.
Publicado: (2023) -
Market prediction using machine learning based on social media specific features
por: Sekioka, Satoshi, et al.
Publicado: (2023) -
Machine Learning to Detect Posture and Behavior in Dairy Cows: Information from an Accelerometer on the Animal’s Left Flank
por: Balasso, Paolo, et al.
Publicado: (2021) -
Detecting at-risk mental states for psychosis (ARMS) using machine learning ensembles and facial features
por: Loch, Alexandre Andrade, et al.
Publicado: (2023) -
Facial Expression Recognition of Instructor Using Deep Features and Extreme Learning Machine
por: Bhatti, Yusra Khalid, et al.
Publicado: (2021)