Cargando…
Radiation pneumonitis prediction after stereotactic body radiation therapy based on 3D dose distribution: dosiomics and/or deep learning-based radiomics features
BACKGROUND: This study was designed to establish radiation pneumonitis (RP) prediction models using dosiomics and/or deep learning-based radiomics (DLR) features based on 3D dose distribution. METHODS: A total of 140 patients with non-small cell lung cancer who received stereotactic body radiation t...
Autores principales: | Huang, Ying, Feng, Aihui, Lin, Yang, Gu, Hengle, Chen, Hua, Wang, Hao, Shao, Yan, Duan, Yanhua, Zhuo, Weihai, Xu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673306/ https://www.ncbi.nlm.nih.gov/pubmed/36397060 http://dx.doi.org/10.1186/s13014-022-02154-8 |
Ejemplares similares
-
Radiomic and Dosiomic Features for the Prediction of Radiation Pneumonitis Across Esophageal Cancer and Lung Cancer
por: Puttanawarut, Chanon, et al.
Publicado: (2022) -
Dosiomics and radiomics to predict pneumonitis after thoracic stereotactic body radiotherapy and immune checkpoint inhibition
por: Kraus, Kim Melanie, et al.
Publicado: (2023) -
Biological dosiomic features for the prediction of radiation pneumonitis in esophageal cancer patients
por: Puttanawarut, Chanon, et al.
Publicado: (2021) -
Influence of Clinical and Tumor Factors on Interfraction Setup Errors With Rotation Correction for Vacuum Cushion in Lung Stereotactic Body Radiation Therapy
por: Chen, Hua, et al.
Publicado: (2021) -
Dosiomics: Extracting 3D Spatial Features From Dose Distribution to Predict Incidence of Radiation Pneumonitis
por: Liang, Bin, et al.
Publicado: (2019)