Cargando…

Zinc–Acetate–Amine Complexes as Precursors to ZnO and the Effect of the Amine on Nanoparticle Morphology, Size, and Photocatalytic Activity

Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)(2)(amine)(x)] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C soluti...

Descripción completa

Detalles Bibliográficos
Autores principales: Harris, Jerry D., Wade, Emily A., Ellison, Emmaline G., Pena, Cecelia C., Bryant, Stephen C., McKibben, Nicholas L., Christy, Allison J., Laughlin, Kevin O., Harris, Ashley E., Goettsche, Kenrik V., Larson, Chad E., Hubbard, Seth M., Cowen, Jonathan E., Eixenberger, Josh, Estrada, David, Chase, Jennifer R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673400/
https://www.ncbi.nlm.nih.gov/pubmed/36405766
http://dx.doi.org/10.3390/catal12101099
Descripción
Sumario:Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)(2)(amine)(x)] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used. Powders prepared at 65 °C with rapid precipitation yielded particles with minimal morphology differences, but particle size was dependent on the precursor used. The smallest particles were produced using precursors that yielded crystals with low aspect ratios during high-temperature synthesis. Particles produced during rapid synthesis had sizes ranging from 21–45 nm. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, BET, and diffuse reflectance. The materials prepared using precursors with less-volatile amines were found to retain more organic material than ZnO produced using precursors with more volatile amines. The amount of organic material associated with the nanoparticles influenced the photocatalytic activity of the ZnO, with powders containing less organic material producing faster rate constants for the decolorizing of malachite green solutions under ultraviolet illumination, independent of particle size. [Zn(acetate)(2)(hydrazine)(2)] produced ZnO with the fastest rate constant and was recycled five times for dye degradation studies that revealed minimal to no reduction in catalytic efficiency.