Cargando…
A comparison of classical and machine learning-based phenotype prediction methods on simulated data and three plant species
Genomic selection is an integral tool for breeders to accurately select plants directly from genotype data leading to faster and more resource-efficient breeding programs. Several prediction methods have been established in the last few years. These range from classical linear mixed models to comple...
Autores principales: | John, Maura, Haselbeck, Florian, Dass, Rupashree, Malisi, Christoph, Ricca, Patrizia, Dreischer, Christian, Schultheiss, Sebastian J., Grimm, Dominik G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673477/ https://www.ncbi.nlm.nih.gov/pubmed/36407627 http://dx.doi.org/10.3389/fpls.2022.932512 |
Ejemplares similares
-
easyPheno: An easy-to-use and easy-to-extend Python framework for phenotype prediction using Bayesian optimization
por: Haselbeck, Florian, et al.
Publicado: (2023) -
Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops
por: Genze, Nikita, et al.
Publicado: (2020) -
Superior protein thermophilicity prediction with protein language model embeddings
por: Haselbeck, Florian, et al.
Publicado: (2023) -
The contribution of electrostatics to hydrogen exchange in the unfolded protein state
por: Dass, Rupashree, et al.
Publicado: (2021) -
ODiNPred: comprehensive prediction of protein order and disorder
por: Dass, Rupashree, et al.
Publicado: (2020)