Cargando…
GSAMDA: a computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder
BACKGROUND: Clinical studies show that microorganisms are closely related to human health, and the discovery of potential associations between microbes and drugs will facilitate drug research and development. However, at present, few computational methods for predicting microbe–drug associations hav...
Autores principales: | Tan, Yaqin, Zou, Juan, Kuang, Linai, Wang, Xiangyi, Zeng, Bin, Zhang, Zhen, Wang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673879/ https://www.ncbi.nlm.nih.gov/pubmed/36401174 http://dx.doi.org/10.1186/s12859-022-05053-7 |
Ejemplares similares
-
GACNNMDA: a computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier
por: Ma, Qing, et al.
Publicado: (2023) -
Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network
por: Peng, Lihong, et al.
Publicado: (2023) -
SAELGMDA: Identifying human microbe–disease associations based on sparse autoencoder and LightGBM
por: Wang, Feixiang, et al.
Publicado: (2023) -
Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
por: Feng, Xiang, et al.
Publicado: (2022) -
Prediction of miRNA-disease associations in microbes based on graph convolutional networks and autoencoders
por: Liao, Qingquan, et al.
Publicado: (2023)