Cargando…
Monochromatic image reconstruction via machine learning
X-ray computed tomography (CT) is a nondestructive imaging technique to reconstruct cross-sectional images of an object using x-ray measurements taken from different view angles for medical diagnosis, therapeutic planning, security screening, and other applications. In clinical practice, the x-ray t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673989/ https://www.ncbi.nlm.nih.gov/pubmed/36406260 http://dx.doi.org/10.1088/2632-2153/abdbff |
_version_ | 1784833062361628672 |
---|---|
author | Cong, Wenxiang Xi, Yan De Man, Bruno Wang, Ge |
author_facet | Cong, Wenxiang Xi, Yan De Man, Bruno Wang, Ge |
author_sort | Cong, Wenxiang |
collection | PubMed |
description | X-ray computed tomography (CT) is a nondestructive imaging technique to reconstruct cross-sectional images of an object using x-ray measurements taken from different view angles for medical diagnosis, therapeutic planning, security screening, and other applications. In clinical practice, the x-ray tube emits polychromatic x-rays, and the x-ray detector array operates in the energy-integrating mode to acquire energy intensity. This physical process of x-ray imaging is accurately described by an energy-dependent non-linear integral equation on the basis of the Beer–Lambert law. However, the non-linear model is not invertible using a computationally efficient solution and is often approximated as a linear integral model in the form of the Radon transform, which basically loses energy-dependent information. This approximate model produces an inaccurate quantification of attenuation images, suffering from beam-hardening effects. In this paper, a machine learning-based approach is proposed to correct the model mismatch to achieve quantitative CT imaging. Specifically, a one-dimensional network model is proposed to learn a non-linear transform from a training dataset to map a polychromatic CT image to its monochromatic sinogram at a pre-specified energy level, realizing virtual monochromatic (VM) imaging effectively and efficiently. Our results show that the proposed method recovers high-quality monochromatic projections with an average relative error of less than 2%. The resultant x-ray VM imaging can be applied for beam-hardening correction, material differentiation and tissue characterization, and proton therapy treatment planning. |
format | Online Article Text |
id | pubmed-9673989 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-96739892022-11-18 Monochromatic image reconstruction via machine learning Cong, Wenxiang Xi, Yan De Man, Bruno Wang, Ge Mach Learn Sci Technol Article X-ray computed tomography (CT) is a nondestructive imaging technique to reconstruct cross-sectional images of an object using x-ray measurements taken from different view angles for medical diagnosis, therapeutic planning, security screening, and other applications. In clinical practice, the x-ray tube emits polychromatic x-rays, and the x-ray detector array operates in the energy-integrating mode to acquire energy intensity. This physical process of x-ray imaging is accurately described by an energy-dependent non-linear integral equation on the basis of the Beer–Lambert law. However, the non-linear model is not invertible using a computationally efficient solution and is often approximated as a linear integral model in the form of the Radon transform, which basically loses energy-dependent information. This approximate model produces an inaccurate quantification of attenuation images, suffering from beam-hardening effects. In this paper, a machine learning-based approach is proposed to correct the model mismatch to achieve quantitative CT imaging. Specifically, a one-dimensional network model is proposed to learn a non-linear transform from a training dataset to map a polychromatic CT image to its monochromatic sinogram at a pre-specified energy level, realizing virtual monochromatic (VM) imaging effectively and efficiently. Our results show that the proposed method recovers high-quality monochromatic projections with an average relative error of less than 2%. The resultant x-ray VM imaging can be applied for beam-hardening correction, material differentiation and tissue characterization, and proton therapy treatment planning. 2021-06 2021-04-14 /pmc/articles/PMC9673989/ /pubmed/36406260 http://dx.doi.org/10.1088/2632-2153/abdbff Text en https://creativecommons.org/licenses/by/4.0/Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Cong, Wenxiang Xi, Yan De Man, Bruno Wang, Ge Monochromatic image reconstruction via machine learning |
title | Monochromatic image reconstruction via machine learning |
title_full | Monochromatic image reconstruction via machine learning |
title_fullStr | Monochromatic image reconstruction via machine learning |
title_full_unstemmed | Monochromatic image reconstruction via machine learning |
title_short | Monochromatic image reconstruction via machine learning |
title_sort | monochromatic image reconstruction via machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673989/ https://www.ncbi.nlm.nih.gov/pubmed/36406260 http://dx.doi.org/10.1088/2632-2153/abdbff |
work_keys_str_mv | AT congwenxiang monochromaticimagereconstructionviamachinelearning AT xiyan monochromaticimagereconstructionviamachinelearning AT demanbruno monochromaticimagereconstructionviamachinelearning AT wangge monochromaticimagereconstructionviamachinelearning |