Cargando…
Chemical–protein relation extraction with ensembles of carefully tuned pretrained language models
The identification of chemical–protein interactions described in the literature is an important task with applications in drug design, precision medicine and biotechnology. Manual extraction of such relationships from the biomedical literature is costly and often prohibitively time-consuming. The Bi...
Autores principales: | Weber, Leon, Sänger, Mario, Garda, Samuele, Barth, Fabio, Alt, Christoph, Leser, Ulf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674024/ https://www.ncbi.nlm.nih.gov/pubmed/36399413 http://dx.doi.org/10.1093/database/baac098 |
Ejemplares similares
-
BELB: a biomedical entity linking benchmark
por: Garda, Samuele, et al.
Publicado: (2023) -
An Improved Math Word Problem (MWP) Model Using Unified Pretrained Language Model (UniLM) for Pretraining
por: Zhang, Dongqiu, et al.
Publicado: (2022) -
PEDL: extracting protein–protein associations using deep language models and distant supervision
por: Weber, Leon, et al.
Publicado: (2020) -
Sequence-to-sequence pretraining for a less-resourced Slovenian language
por: Ulčar, Matej, et al.
Publicado: (2023) -
PEDL+: protein-centered relation extraction from PubMed at your fingertip
por: Weber, Leon, et al.
Publicado: (2023)