Cargando…

A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling

In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Sohaib, Hussain, Sardar, Ullah, Kalim, Zahid, Erum, Aamir, Muhammad, Shabbir, Javid, Ahmad, Zubair, Alshanbari, Huda M., Alajlan, Wejdan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674154/
https://www.ncbi.nlm.nih.gov/pubmed/36399453
http://dx.doi.org/10.1371/journal.pone.0276540
_version_ 1784833093070225408
author Ahmad, Sohaib
Hussain, Sardar
Ullah, Kalim
Zahid, Erum
Aamir, Muhammad
Shabbir, Javid
Ahmad, Zubair
Alshanbari, Huda M.
Alajlan, Wejdan
author_facet Ahmad, Sohaib
Hussain, Sardar
Ullah, Kalim
Zahid, Erum
Aamir, Muhammad
Shabbir, Javid
Ahmad, Zubair
Alshanbari, Huda M.
Alajlan, Wejdan
author_sort Ahmad, Sohaib
collection PubMed
description In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine the performances of a new improved proposed estimator. A simulation study is also recognized to assess the robustness and generalizability of the proposed estimator. From the result of real data sets and simulation study, it is examining that the proposed estimator give minimum mean square error and percentage relative efficiency are higher than all existing counterparts, which shown the importance of new improved estimator. The theoretical and numerical result illustrated that the proposed variance estimator based on simple random sampling using dual auxiliary information has the best among all existing estimators.
format Online
Article
Text
id pubmed-9674154
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-96741542022-11-19 A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling Ahmad, Sohaib Hussain, Sardar Ullah, Kalim Zahid, Erum Aamir, Muhammad Shabbir, Javid Ahmad, Zubair Alshanbari, Huda M. Alajlan, Wejdan PLoS One Research Article In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine the performances of a new improved proposed estimator. A simulation study is also recognized to assess the robustness and generalizability of the proposed estimator. From the result of real data sets and simulation study, it is examining that the proposed estimator give minimum mean square error and percentage relative efficiency are higher than all existing counterparts, which shown the importance of new improved estimator. The theoretical and numerical result illustrated that the proposed variance estimator based on simple random sampling using dual auxiliary information has the best among all existing estimators. Public Library of Science 2022-11-18 /pmc/articles/PMC9674154/ /pubmed/36399453 http://dx.doi.org/10.1371/journal.pone.0276540 Text en © 2022 Ahmad et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ahmad, Sohaib
Hussain, Sardar
Ullah, Kalim
Zahid, Erum
Aamir, Muhammad
Shabbir, Javid
Ahmad, Zubair
Alshanbari, Huda M.
Alajlan, Wejdan
A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling
title A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling
title_full A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling
title_fullStr A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling
title_full_unstemmed A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling
title_short A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling
title_sort simulation study: improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674154/
https://www.ncbi.nlm.nih.gov/pubmed/36399453
http://dx.doi.org/10.1371/journal.pone.0276540
work_keys_str_mv AT ahmadsohaib asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT hussainsardar asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT ullahkalim asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT zahiderum asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT aamirmuhammad asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT shabbirjavid asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT ahmadzubair asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT alshanbarihudam asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT alajlanwejdan asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT ahmadsohaib simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT hussainsardar simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT ullahkalim simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT zahiderum simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT aamirmuhammad simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT shabbirjavid simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT ahmadzubair simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT alshanbarihudam simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling
AT alajlanwejdan simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling