Cargando…
A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling
In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674154/ https://www.ncbi.nlm.nih.gov/pubmed/36399453 http://dx.doi.org/10.1371/journal.pone.0276540 |
_version_ | 1784833093070225408 |
---|---|
author | Ahmad, Sohaib Hussain, Sardar Ullah, Kalim Zahid, Erum Aamir, Muhammad Shabbir, Javid Ahmad, Zubair Alshanbari, Huda M. Alajlan, Wejdan |
author_facet | Ahmad, Sohaib Hussain, Sardar Ullah, Kalim Zahid, Erum Aamir, Muhammad Shabbir, Javid Ahmad, Zubair Alshanbari, Huda M. Alajlan, Wejdan |
author_sort | Ahmad, Sohaib |
collection | PubMed |
description | In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine the performances of a new improved proposed estimator. A simulation study is also recognized to assess the robustness and generalizability of the proposed estimator. From the result of real data sets and simulation study, it is examining that the proposed estimator give minimum mean square error and percentage relative efficiency are higher than all existing counterparts, which shown the importance of new improved estimator. The theoretical and numerical result illustrated that the proposed variance estimator based on simple random sampling using dual auxiliary information has the best among all existing estimators. |
format | Online Article Text |
id | pubmed-9674154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-96741542022-11-19 A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling Ahmad, Sohaib Hussain, Sardar Ullah, Kalim Zahid, Erum Aamir, Muhammad Shabbir, Javid Ahmad, Zubair Alshanbari, Huda M. Alajlan, Wejdan PLoS One Research Article In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine the performances of a new improved proposed estimator. A simulation study is also recognized to assess the robustness and generalizability of the proposed estimator. From the result of real data sets and simulation study, it is examining that the proposed estimator give minimum mean square error and percentage relative efficiency are higher than all existing counterparts, which shown the importance of new improved estimator. The theoretical and numerical result illustrated that the proposed variance estimator based on simple random sampling using dual auxiliary information has the best among all existing estimators. Public Library of Science 2022-11-18 /pmc/articles/PMC9674154/ /pubmed/36399453 http://dx.doi.org/10.1371/journal.pone.0276540 Text en © 2022 Ahmad et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ahmad, Sohaib Hussain, Sardar Ullah, Kalim Zahid, Erum Aamir, Muhammad Shabbir, Javid Ahmad, Zubair Alshanbari, Huda M. Alajlan, Wejdan A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling |
title | A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling |
title_full | A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling |
title_fullStr | A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling |
title_full_unstemmed | A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling |
title_short | A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling |
title_sort | simulation study: improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674154/ https://www.ncbi.nlm.nih.gov/pubmed/36399453 http://dx.doi.org/10.1371/journal.pone.0276540 |
work_keys_str_mv | AT ahmadsohaib asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT hussainsardar asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT ullahkalim asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT zahiderum asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT aamirmuhammad asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT shabbirjavid asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT ahmadzubair asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT alshanbarihudam asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT alajlanwejdan asimulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT ahmadsohaib simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT hussainsardar simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT ullahkalim simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT zahiderum simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT aamirmuhammad simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT shabbirjavid simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT ahmadzubair simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT alshanbarihudam simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling AT alajlanwejdan simulationstudyimprovedratioinregressiontypevarianceestimatorbasedondualuseofauxiliaryvariableundersimplerandomsampling |