Cargando…
Telomere length is causally connected to brain MRI image derived phenotypes: A mendelian randomization study
Recent evidence suggests that shorter telomere length (TL) is associated with neuro degenerative diseases and aging related outcomes. The causal association between TL and brain characteristics represented by image derived phenotypes (IDPs) from different magnetic resonance imaging (MRI) modalities...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674175/ https://www.ncbi.nlm.nih.gov/pubmed/36399449 http://dx.doi.org/10.1371/journal.pone.0277344 |
_version_ | 1784833098361339904 |
---|---|
author | Salih, Ahmed Galazzo, Ilaria Boscolo Petersen, Steffen E. Lekadir, Karim Radeva, Petia Menegaz, Gloria Altmann, André |
author_facet | Salih, Ahmed Galazzo, Ilaria Boscolo Petersen, Steffen E. Lekadir, Karim Radeva, Petia Menegaz, Gloria Altmann, André |
author_sort | Salih, Ahmed |
collection | PubMed |
description | Recent evidence suggests that shorter telomere length (TL) is associated with neuro degenerative diseases and aging related outcomes. The causal association between TL and brain characteristics represented by image derived phenotypes (IDPs) from different magnetic resonance imaging (MRI) modalities remains unclear. Here, we use two-sample Mendelian randomization (MR) to systematically assess the causal relationships between TL and 3,935 brain IDPs. Overall, the MR results suggested that TL was causally associated with 193 IDPs with majority representing diffusion metrics in white matter tracts. 68 IDPs were negatively associated with TL indicating that longer TL causes decreasing in these IDPs, while the other 125 were associated positively (longer TL leads to increased IDPs measures). Among them, ten IDPs have been previously reported as informative biomarkers to estimate brain age. However, the effect direction between TL and IDPs did not reflect the observed direction between aging and IDPs: longer TL was associated with decreases in fractional anisotropy and increases in axial, radial and mean diffusivity. For instance, TL was positively associated with radial diffusivity in the left perihippocampal cingulum tract and with mean diffusivity in right perihippocampal cingulum tract. Our results revealed a causal role of TL on white matter integrity which makes it a valuable factor to be considered when brain age is estimated and investigated. |
format | Online Article Text |
id | pubmed-9674175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-96741752022-11-19 Telomere length is causally connected to brain MRI image derived phenotypes: A mendelian randomization study Salih, Ahmed Galazzo, Ilaria Boscolo Petersen, Steffen E. Lekadir, Karim Radeva, Petia Menegaz, Gloria Altmann, André PLoS One Research Article Recent evidence suggests that shorter telomere length (TL) is associated with neuro degenerative diseases and aging related outcomes. The causal association between TL and brain characteristics represented by image derived phenotypes (IDPs) from different magnetic resonance imaging (MRI) modalities remains unclear. Here, we use two-sample Mendelian randomization (MR) to systematically assess the causal relationships between TL and 3,935 brain IDPs. Overall, the MR results suggested that TL was causally associated with 193 IDPs with majority representing diffusion metrics in white matter tracts. 68 IDPs were negatively associated with TL indicating that longer TL causes decreasing in these IDPs, while the other 125 were associated positively (longer TL leads to increased IDPs measures). Among them, ten IDPs have been previously reported as informative biomarkers to estimate brain age. However, the effect direction between TL and IDPs did not reflect the observed direction between aging and IDPs: longer TL was associated with decreases in fractional anisotropy and increases in axial, radial and mean diffusivity. For instance, TL was positively associated with radial diffusivity in the left perihippocampal cingulum tract and with mean diffusivity in right perihippocampal cingulum tract. Our results revealed a causal role of TL on white matter integrity which makes it a valuable factor to be considered when brain age is estimated and investigated. Public Library of Science 2022-11-18 /pmc/articles/PMC9674175/ /pubmed/36399449 http://dx.doi.org/10.1371/journal.pone.0277344 Text en © 2022 Salih et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Salih, Ahmed Galazzo, Ilaria Boscolo Petersen, Steffen E. Lekadir, Karim Radeva, Petia Menegaz, Gloria Altmann, André Telomere length is causally connected to brain MRI image derived phenotypes: A mendelian randomization study |
title | Telomere length is causally connected to brain MRI image derived phenotypes: A mendelian randomization study |
title_full | Telomere length is causally connected to brain MRI image derived phenotypes: A mendelian randomization study |
title_fullStr | Telomere length is causally connected to brain MRI image derived phenotypes: A mendelian randomization study |
title_full_unstemmed | Telomere length is causally connected to brain MRI image derived phenotypes: A mendelian randomization study |
title_short | Telomere length is causally connected to brain MRI image derived phenotypes: A mendelian randomization study |
title_sort | telomere length is causally connected to brain mri image derived phenotypes: a mendelian randomization study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674175/ https://www.ncbi.nlm.nih.gov/pubmed/36399449 http://dx.doi.org/10.1371/journal.pone.0277344 |
work_keys_str_mv | AT salihahmed telomerelengthiscausallyconnectedtobrainmriimagederivedphenotypesamendelianrandomizationstudy AT galazzoilariaboscolo telomerelengthiscausallyconnectedtobrainmriimagederivedphenotypesamendelianrandomizationstudy AT petersensteffene telomerelengthiscausallyconnectedtobrainmriimagederivedphenotypesamendelianrandomizationstudy AT lekadirkarim telomerelengthiscausallyconnectedtobrainmriimagederivedphenotypesamendelianrandomizationstudy AT radevapetia telomerelengthiscausallyconnectedtobrainmriimagederivedphenotypesamendelianrandomizationstudy AT menegazgloria telomerelengthiscausallyconnectedtobrainmriimagederivedphenotypesamendelianrandomizationstudy AT altmannandre telomerelengthiscausallyconnectedtobrainmriimagederivedphenotypesamendelianrandomizationstudy |