Cargando…
Systematic reduction of the dimensionality of natural scenes allows accurate predictions of retinal ganglion cell spike outputs
The mammalian retina engages a broad array of linear and nonlinear circuit mechanisms to convert natural scenes into retinal ganglion cell (RGC) spike outputs. Although many individual integration mechanisms are well understood, we know less about how multiple mechanisms interact to encode the compl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674269/ https://www.ncbi.nlm.nih.gov/pubmed/36343230 http://dx.doi.org/10.1073/pnas.2121744119 |
_version_ | 1784833119946276864 |
---|---|
author | Freedland, Julian Rieke, Fred |
author_facet | Freedland, Julian Rieke, Fred |
author_sort | Freedland, Julian |
collection | PubMed |
description | The mammalian retina engages a broad array of linear and nonlinear circuit mechanisms to convert natural scenes into retinal ganglion cell (RGC) spike outputs. Although many individual integration mechanisms are well understood, we know less about how multiple mechanisms interact to encode the complex spatial features present in natural inputs. Here, we identified key spatial features in natural scenes that shape encoding by primate parasol RGCs. Our approach identified simplifications in the spatial structure of natural scenes that minimally altered RGC spike responses. We observed that reducing natural movies into 16 linearly integrated regions described ∼80% of the structure of parasol RGC spike responses; this performance depended on the number of regions but not their precise spatial locations. We used simplified stimuli to design high-dimensional metamers that recapitulated responses to naturalistic movies. Finally, we modeled the retinal computations that convert flashed natural images into one-dimensional spike counts. |
format | Online Article Text |
id | pubmed-9674269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-96742692023-05-07 Systematic reduction of the dimensionality of natural scenes allows accurate predictions of retinal ganglion cell spike outputs Freedland, Julian Rieke, Fred Proc Natl Acad Sci U S A Biological Sciences The mammalian retina engages a broad array of linear and nonlinear circuit mechanisms to convert natural scenes into retinal ganglion cell (RGC) spike outputs. Although many individual integration mechanisms are well understood, we know less about how multiple mechanisms interact to encode the complex spatial features present in natural inputs. Here, we identified key spatial features in natural scenes that shape encoding by primate parasol RGCs. Our approach identified simplifications in the spatial structure of natural scenes that minimally altered RGC spike responses. We observed that reducing natural movies into 16 linearly integrated regions described ∼80% of the structure of parasol RGC spike responses; this performance depended on the number of regions but not their precise spatial locations. We used simplified stimuli to design high-dimensional metamers that recapitulated responses to naturalistic movies. Finally, we modeled the retinal computations that convert flashed natural images into one-dimensional spike counts. National Academy of Sciences 2022-11-07 2022-11-15 /pmc/articles/PMC9674269/ /pubmed/36343230 http://dx.doi.org/10.1073/pnas.2121744119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Freedland, Julian Rieke, Fred Systematic reduction of the dimensionality of natural scenes allows accurate predictions of retinal ganglion cell spike outputs |
title | Systematic reduction of the dimensionality of natural scenes allows accurate predictions of retinal ganglion cell spike outputs |
title_full | Systematic reduction of the dimensionality of natural scenes allows accurate predictions of retinal ganglion cell spike outputs |
title_fullStr | Systematic reduction of the dimensionality of natural scenes allows accurate predictions of retinal ganglion cell spike outputs |
title_full_unstemmed | Systematic reduction of the dimensionality of natural scenes allows accurate predictions of retinal ganglion cell spike outputs |
title_short | Systematic reduction of the dimensionality of natural scenes allows accurate predictions of retinal ganglion cell spike outputs |
title_sort | systematic reduction of the dimensionality of natural scenes allows accurate predictions of retinal ganglion cell spike outputs |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674269/ https://www.ncbi.nlm.nih.gov/pubmed/36343230 http://dx.doi.org/10.1073/pnas.2121744119 |
work_keys_str_mv | AT freedlandjulian systematicreductionofthedimensionalityofnaturalscenesallowsaccuratepredictionsofretinalganglioncellspikeoutputs AT riekefred systematicreductionofthedimensionalityofnaturalscenesallowsaccuratepredictionsofretinalganglioncellspikeoutputs |