Cargando…
A comparison of central‐tendency and interconnectivity approaches to clustering multivariate data with irregular structure
QUESTIONS: Most clustering methods assume data are structured as discrete hyperspheroidal clusters to be evaluated by measures of central tendency. If vegetation data do not conform to this model, then vegetation data may be clustered incorrectly. What are the implications for cluster stability and...
Autores principales: | Tozer, Mark, Keith, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674469/ https://www.ncbi.nlm.nih.gov/pubmed/36415880 http://dx.doi.org/10.1002/ece3.9496 |
Ejemplares similares
-
Beyond central‐tendency: If we agree discrete vegetation communities do not exist, should we investigate other methods of clustering?
por: Tozer, Mark G., et al.
Publicado: (2023) -
Cluster tendency assessment in neuronal spike data
por: Mahallati, Sara, et al.
Publicado: (2019) -
A binary-based approach for detecting irregularly shaped clusters
por: Wang, Tai-Chi, et al.
Publicado: (2013) -
Measures of central tendency: The mean
por: Manikandan, S.
Publicado: (2011) -
Clustering tendency in the protein fold space
por: Carugo, Oliviero
Publicado: (2010)