Cargando…
A fast blind zero-shot denoiser
Image noise is a common problem in light microscopy. This is particularly true in real-time live-cell imaging applications in which long-term cell viability necessitates low-light conditions. Modern denoisers are typically trained on a representative dataset, sometimes consisting of just unpaired no...
Autores principales: | Lequyer, Jason, Philip, Reuben, Sharma, Amit, Hsu, Wen-Hsin, Pelletier, Laurence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674521/ https://www.ncbi.nlm.nih.gov/pubmed/36415333 http://dx.doi.org/10.1038/s42256-022-00547-8 |
Ejemplares similares
-
A generative adversarial network with “zero-shot” learning for positron image denoising
por: Zhu, Mingwei, et al.
Publicado: (2023) -
mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis
por: Zeng, Yanyan, et al.
Publicado: (2022) -
Detecting Errors with Zero-Shot Learning
por: Wu, Xiaoyu, et al.
Publicado: (2022) -
Author Correction: mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis
por: Zeng, Yanyan, et al.
Publicado: (2023) -
Zero-shot stance detection: Paradigms and challenges
por: Allaway, Emily, et al.
Publicado: (2023)