Cargando…
Using model explanations to guide deep learning models towards consistent explanations for EHR data
It has been shown that identical deep learning (DL) architectures will produce distinct explanations when trained with different hyperparameters that are orthogonal to the task (e.g. random seed, training set order). In domains such as healthcare and finance, where transparency and explainability is...
Autores principales: | Watson, Matthew, Awwad Shiekh Hasan, Bashar, Al Moubayed, Noura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674624/ https://www.ncbi.nlm.nih.gov/pubmed/36400825 http://dx.doi.org/10.1038/s41598-022-24356-6 |
Ejemplares similares
-
Author Correction: Using model explanations to guide deep learning models towards consistent explanations for EHR data
por: Watson, Matthew, et al.
Publicado: (2023) -
Beyond the topics: how deep learning can improve the discriminability of probabilistic topic modelling
por: Al Moubayed, Noura, et al.
Publicado: (2020) -
Improve the Deep Learning Models in Forestry Based on Explanations and Expertise
por: Cheng, Ximeng, et al.
Publicado: (2022) -
Explanation and inference: mechanistic and functional explanations guide property generalization
por: Lombrozo, Tania, et al.
Publicado: (2014) -
Benchmarking explanation methods for mental state decoding with deep learning models
por: Thomas, Armin W., et al.
Publicado: (2023)