Cargando…
Decarboxylative oxidation-enabled consecutive C-C bond cleavage
The selective cleavage of C-C bonds is of fundamental interest because it provides an alternative approach to traditional chemical synthesis, which is focused primarily on building up molecular complexity. However, current C-C cleavage methods provide only limited opportunities. For example, selecti...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674625/ https://www.ncbi.nlm.nih.gov/pubmed/36400775 http://dx.doi.org/10.1038/s41467-022-34829-x |
Sumario: | The selective cleavage of C-C bonds is of fundamental interest because it provides an alternative approach to traditional chemical synthesis, which is focused primarily on building up molecular complexity. However, current C-C cleavage methods provide only limited opportunities. For example, selective C(sp(3))-C(sp(3)) bond cleavage generally relies on the use of transition-metal to open strained ring systems or iminyl and alkoxy radicals to induce β-fragmentation. Here we show that by merging photoredox catalysis with copper catalysis, we are able to employ α-trisubstituted carboxylic acids as substrates and achieve consecutive C-C bond cleavage, resulting in the scission of the inert β-CH(2) group. The key transformation relies on the decarboxylative oxidation process, which could selectively generate in-situ formed alkoxy radicals and trigger consecutive C-C bond cleavage. This complicated yet interesting reaction might help the development of other methods for inert C(sp(3))-C(sp(3)) bond cleavage. |
---|