Cargando…

Radiation dose estimation with time-since-exposure uncertainty using the [Formula: see text] -H2AX biomarker

To predict the health effects of accidental or therapeutic radiation exposure, one must estimate the radiation dose that person received. A well-known ionising radiation biomarker, phosphorylated [Formula: see text] -H2AX protein, is used to evaluate cell damage and is thus suitable for the dose est...

Descripción completa

Detalles Bibliográficos
Autores principales: Młynarczyk, Dorota, Puig, Pedro, Armero, Carmen, Gómez-Rubio, Virgilio, Barquinero, Joan F., Pujol-Canadell, Mònica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674680/
https://www.ncbi.nlm.nih.gov/pubmed/36400833
http://dx.doi.org/10.1038/s41598-022-24331-1
Descripción
Sumario:To predict the health effects of accidental or therapeutic radiation exposure, one must estimate the radiation dose that person received. A well-known ionising radiation biomarker, phosphorylated [Formula: see text] -H2AX protein, is used to evaluate cell damage and is thus suitable for the dose estimation process. In this paper, we present new Bayesian methods that, in contrast to approaches where estimation is carried out at predetermined post-irradiation times, allow for uncertainty regarding the time since radiation exposure and, as a result, produce more precise results. We also use the Laplace approximation method, which drastically cuts down on the time needed to get results. Real data are used to illustrate the methods, and analyses indicate that the models might be a practical choice for the [Formula: see text] -H2AX biomarker dose estimation process.