Cargando…
Deep graph level anomaly detection with contrastive learning
Graph level anomaly detection (GLAD) aims to spot anomalous graphs that structure pattern and feature information are different from most normal graphs in a graph set, which is rarely studied by other researchers but has significant application value. For instance, GLAD can be used to distinguish so...
Autores principales: | Luo, Xuexiong, Wu, Jia, Yang, Jian, Xue, Shan, Peng, Hao, Zhou, Chuan, Chen, Hongyang, Li, Zhao, Sheng, Quan Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674681/ https://www.ncbi.nlm.nih.gov/pubmed/36400802 http://dx.doi.org/10.1038/s41598-022-22086-3 |
Ejemplares similares
-
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Li, Shicheng, et al.
Publicado: (2021) -
Deep single-cell RNA-seq data clustering with graph prototypical contrastive learning
por: Lee, Junseok, et al.
Publicado: (2023) -
CMMS-GCL: cross-modality metabolic stability prediction with graph contrastive learning
por: Du, Bing-Xue, et al.
Publicado: (2023) -
Hierarchical graph transformer with contrastive learning for protein function prediction
por: Gu, Zhonghui, et al.
Publicado: (2023) -
Graph Clustering with High-Order Contrastive Learning
por: Li, Wang, et al.
Publicado: (2023)