Cargando…
UnMICST: Deep learning with real augmentation for robust segmentation of highly multiplexed images of human tissues
Upcoming technologies enable routine collection of highly multiplexed (20–60 channel), subcellular resolution images of mammalian tissues for research and diagnosis. Extracting single cell data from such images requires accurate image segmentation, a challenging problem commonly tackled with deep le...
Autores principales: | Yapp, Clarence, Novikov, Edward, Jang, Won-Dong, Vallius, Tuulia, Chen, Yu-An, Cicconet, Marcelo, Maliga, Zoltan, Jacobson, Connor A., Wei, Donglai, Santagata, Sandro, Pfister, Hanspeter, Sorger, Peter K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674686/ https://www.ncbi.nlm.nih.gov/pubmed/36400937 http://dx.doi.org/10.1038/s42003-022-04076-3 |
Ejemplares similares
-
The Spatial Landscape of Progression and Immunoediting in Primary Melanoma at Single-Cell Resolution
por: Nirmal, Ajit J., et al.
Publicado: (2022) -
Highly multiplexed immunofluorescence images and single-cell data of immune markers in tonsil and lung cancer
por: Rashid, Rumana, et al.
Publicado: (2019) -
Cell Spotter (CSPOT): A machine-learning approach to automated cell spotting and quantification of highly multiplexed tissue images
por: Nirmal, Ajit J., et al.
Publicado: (2023) -
Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR
por: Muhlich, Jeremy L, et al.
Publicado: (2022) -
Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes
por: Lin, Jia-Ren, et al.
Publicado: (2018)