Cargando…
Climate suitability of the Mediterranean Basin for citrus black spot disease (Phyllosticta citricarpa) based on a generic infection model
Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with serious yield and quality losses. The climate suitability of the Mediterranean Basin for CBS development has been long debated. However, CBS has been described in Tunisia. In this study, a generic model was use...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674692/ https://www.ncbi.nlm.nih.gov/pubmed/36400797 http://dx.doi.org/10.1038/s41598-022-22775-z |
Sumario: | Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with serious yield and quality losses. The climate suitability of the Mediterranean Basin for CBS development has been long debated. However, CBS has been described in Tunisia. In this study, a generic model was used to simulate potential infections by ascospores and pycnidiospores together with a degree-day model to predict the onset of ascospore release. High-resolution climatic data were retrieved from the ERA5-Land dataset for the citrus-growing regions in the Mediterranean Basin and other locations where CBS is present. In general, the onset of ascospore release was predicted to occur late in spring, but there is no agreement on the adequacy of this empirical model for extrapolation to the Mediterranean Basin. The generic model indicated that infections by ascospores and pycnidiospores would be concentrated mainly in autumn, as well as in spring for pycnidiospores. In contrast to previous studies, the percentage of hours suitable for infection was higher for pycnidiospores than for ascospores. The values obtained with the generic infection model for Tunisia and several CBS-affected locations worldwide were similar to those for other citrus-growing regions in Europe and Northern Africa. These results support previous work indicating that the climate of the Mediterranean Basin is suitable for CBS development. |
---|