Cargando…
Automated cell-type classification combining dilated convolutional neural networks with label-free acoustic sensing
This study aimed to automatically classify live cells based on their cell type by analyzing the patterns of backscattered signals of cells with minimal effect on normal cell physiology and activity. Our previous studies have demonstrated that label-free acoustic sensing using high-frequency ultrasou...
Autores principales: | Jeon, Hyeon-Ju, Lim, Hae Gyun, Shung, K. Kirk, Lee, O-Joun, Kim, Min Gon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674693/ https://www.ncbi.nlm.nih.gov/pubmed/36400803 http://dx.doi.org/10.1038/s41598-022-22075-6 |
Ejemplares similares
-
Classification of Breast Cancer Cells Using the Integration of High-Frequency Single-Beam Acoustic Tweezers and Convolutional Neural Networks
por: Lim, Hae Gyun, et al.
Publicado: (2020) -
Automated estimation of cancer cell deformability with machine learning and acoustic trapping
por: Lee, O-Joun, et al.
Publicado: (2022) -
Label-free analysis of the characteristics of a single cell trapped by acoustic tweezers
por: Kim, Min Gon, et al.
Publicado: (2017) -
Ultrasonic High-Resolution Imaging and Acoustic Tweezers Using Ultrahigh Frequency Transducer: Integrative Single-Cell Analysis
por: Jung, Hayong, et al.
Publicado: (2023) -
Automated classification of bacterial cell sub-populations with convolutional neural networks
por: Tamiev, Denis, et al.
Publicado: (2020)