Cargando…

Null Distance and Convergence of Lorentzian Length Spaces

The null distance of Sormani and Vega encodes the manifold topology as well as the causality structure of a (smooth) spacetime. We extend this concept to Lorentzian length spaces, the analog of (metric) length spaces, which generalize Lorentzian causality theory beyond the manifold level. We then st...

Descripción completa

Detalles Bibliográficos
Autores principales: Kunzinger, Michael, Steinbauer, Roland
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674770/
https://www.ncbi.nlm.nih.gov/pubmed/36415328
http://dx.doi.org/10.1007/s00023-022-01198-6
Descripción
Sumario:The null distance of Sormani and Vega encodes the manifold topology as well as the causality structure of a (smooth) spacetime. We extend this concept to Lorentzian length spaces, the analog of (metric) length spaces, which generalize Lorentzian causality theory beyond the manifold level. We then study Gromov–Hausdorff convergence based on the null distance in warped product Lorentzian length spaces and prove first results on its compatibility with synthetic curvature bounds.