Cargando…
Null Distance and Convergence of Lorentzian Length Spaces
The null distance of Sormani and Vega encodes the manifold topology as well as the causality structure of a (smooth) spacetime. We extend this concept to Lorentzian length spaces, the analog of (metric) length spaces, which generalize Lorentzian causality theory beyond the manifold level. We then st...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674770/ https://www.ncbi.nlm.nih.gov/pubmed/36415328 http://dx.doi.org/10.1007/s00023-022-01198-6 |
_version_ | 1784833222623887360 |
---|---|
author | Kunzinger, Michael Steinbauer, Roland |
author_facet | Kunzinger, Michael Steinbauer, Roland |
author_sort | Kunzinger, Michael |
collection | PubMed |
description | The null distance of Sormani and Vega encodes the manifold topology as well as the causality structure of a (smooth) spacetime. We extend this concept to Lorentzian length spaces, the analog of (metric) length spaces, which generalize Lorentzian causality theory beyond the manifold level. We then study Gromov–Hausdorff convergence based on the null distance in warped product Lorentzian length spaces and prove first results on its compatibility with synthetic curvature bounds. |
format | Online Article Text |
id | pubmed-9674770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-96747702022-11-20 Null Distance and Convergence of Lorentzian Length Spaces Kunzinger, Michael Steinbauer, Roland Ann Henri Poincare Original Paper The null distance of Sormani and Vega encodes the manifold topology as well as the causality structure of a (smooth) spacetime. We extend this concept to Lorentzian length spaces, the analog of (metric) length spaces, which generalize Lorentzian causality theory beyond the manifold level. We then study Gromov–Hausdorff convergence based on the null distance in warped product Lorentzian length spaces and prove first results on its compatibility with synthetic curvature bounds. Springer International Publishing 2022-05-31 2022 /pmc/articles/PMC9674770/ /pubmed/36415328 http://dx.doi.org/10.1007/s00023-022-01198-6 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Paper Kunzinger, Michael Steinbauer, Roland Null Distance and Convergence of Lorentzian Length Spaces |
title | Null Distance and Convergence of Lorentzian Length Spaces |
title_full | Null Distance and Convergence of Lorentzian Length Spaces |
title_fullStr | Null Distance and Convergence of Lorentzian Length Spaces |
title_full_unstemmed | Null Distance and Convergence of Lorentzian Length Spaces |
title_short | Null Distance and Convergence of Lorentzian Length Spaces |
title_sort | null distance and convergence of lorentzian length spaces |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674770/ https://www.ncbi.nlm.nih.gov/pubmed/36415328 http://dx.doi.org/10.1007/s00023-022-01198-6 |
work_keys_str_mv | AT kunzingermichael nulldistanceandconvergenceoflorentzianlengthspaces AT steinbauerroland nulldistanceandconvergenceoflorentzianlengthspaces |