Cargando…
Null Distance and Convergence of Lorentzian Length Spaces
The null distance of Sormani and Vega encodes the manifold topology as well as the causality structure of a (smooth) spacetime. We extend this concept to Lorentzian length spaces, the analog of (metric) length spaces, which generalize Lorentzian causality theory beyond the manifold level. We then st...
Autores principales: | Kunzinger, Michael, Steinbauer, Roland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674770/ https://www.ncbi.nlm.nih.gov/pubmed/36415328 http://dx.doi.org/10.1007/s00023-022-01198-6 |
Ejemplares similares
-
Lorentzian length spaces
por: Kunzinger, Michael, et al.
Publicado: (2018) -
Inextendibility of spacetimes and Lorentzian length spaces
por: Grant, James D. E., et al.
Publicado: (2018) -
On homogeneous Lorentzian spaces whose null geodesics are homogeneous
por: Meessen, P
Publicado: (2005) -
Homogeneous Lorentzian spaces whose null-geodesics are canonically homogeneous
por: Meessen, P
Publicado: (2006) -
Chen’s Ricci inequalities and topological obstructions on null hypersurfaces of a Lorentzian manifold
por: Ménédore, Karimumuryango
Publicado: (2018)