Cargando…
Retrospective analysis and prospective validation of an AI-based software for intracranial haemorrhage detection at a high-volume trauma centre
Rapid detection of intracranial haemorrhage (ICH) is crucial for assessing patients with neurological symptoms. Prioritising these urgent scans for reporting presents a challenge for radiologists. Artificial intelligence (AI) offers a solution to enable radiologists to triage urgent scans and reduce...
Autores principales: | Zia, Adil, Fletcher, Calvin, Bigwood, Shalini, Ratnakanthan, Prasanna, Seah, Jarrel, Lee, Robin, Kavnoudias, Helen, Law, Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674833/ https://www.ncbi.nlm.nih.gov/pubmed/36400834 http://dx.doi.org/10.1038/s41598-022-24504-y |
Ejemplares similares
-
CLiP, catheter and line position dataset
por: Tang, Jennifer S. N., et al.
Publicado: (2021) -
Desmopressin Acetate in Intracranial Haemorrhage
por: Kapapa, Thomas, et al.
Publicado: (2014) -
Intracranial haemorrhage in dural arteriovenous fistula
por: Garg, Tushar
Publicado: (2019) -
Prime Time for Artificial Intelligence in Interventional Radiology
por: Seah, Jarrel, et al.
Publicado: (2022) -
Fibrinogen replacement in trauma haemorrhage
por: Curry, Nicola, et al.
Publicado: (2014)