Cargando…
Sunflower seeds classification based on sparse convolutional neural networks in multi-objective scene
Generally, sunflower seeds are classified by machine vision-based methods in production, which include using photoelectric sensors to identify light-sensitive signals through traditional algorithms for which the equipment cost is relatively high and using neural network image recognition methods to...
Autores principales: | Jin, Xiaowei, Zhao, Yuhong, Wu, Hao, Sun, Tingting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674848/ https://www.ncbi.nlm.nih.gov/pubmed/36400872 http://dx.doi.org/10.1038/s41598-022-23869-4 |
Ejemplares similares
-
Multi-Object Detection in Security Screening Scene Based on Convolutional Neural Network
por: Sun, Fan, et al.
Publicado: (2022) -
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
por: Liu, Xingyu, et al.
Publicado: (2020) -
The contribution of object identity and configuration to scene representation in convolutional neural networks
por: Tang, Kevin, et al.
Publicado: (2022) -
Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification
por: Zhang, Jianming, et al.
Publicado: (2020) -
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
por: Yu, Donghang, et al.
Publicado: (2020)