Cargando…

Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices

The patterned dielectric back contact (PDBC) structure can be used to form a point-contact architecture that features a dielectric spacer with spatially distributed, reduced-area metal point contacts between the semiconductor back not recognized contact layer and the metal back contact. In this stru...

Descripción completa

Detalles Bibliográficos
Autores principales: Arulanandam, Madhan K., Steiner, Myles A., Tervo, Eric J., Young, Alexandra R., Kuritzky, Leah Y., Perl, Emmett E., Narayan, Tarun C., Kayes, Brendan M., Briggs, Justin A., King, Richard R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674894/
https://www.ncbi.nlm.nih.gov/pubmed/36411803
http://dx.doi.org/10.1016/j.mex.2022.101898
_version_ 1784833248552026112
author Arulanandam, Madhan K.
Steiner, Myles A.
Tervo, Eric J.
Young, Alexandra R.
Kuritzky, Leah Y.
Perl, Emmett E.
Narayan, Tarun C.
Kayes, Brendan M.
Briggs, Justin A.
King, Richard R.
author_facet Arulanandam, Madhan K.
Steiner, Myles A.
Tervo, Eric J.
Young, Alexandra R.
Kuritzky, Leah Y.
Perl, Emmett E.
Narayan, Tarun C.
Kayes, Brendan M.
Briggs, Justin A.
King, Richard R.
author_sort Arulanandam, Madhan K.
collection PubMed
description The patterned dielectric back contact (PDBC) structure can be used to form a point-contact architecture that features a dielectric spacer with spatially distributed, reduced-area metal point contacts between the semiconductor back not recognized contact layer and the metal back contact. In this structure, the dielectric-metal region provides higher reflectance and is electrically insulating. Reduced-area metal point contacts provide electrical conduction for the back contact but typically have lower reflectance. The fabrication methods discussed in this article were developed for thermophotovoltaic cells, but they apply to any III-V optoelectronic device requiring the use of a conductive and highly reflective back contact. Patterned dielectric back contacts may be used for enhanced sub-bandgap reflectance, for enhanced photon recycling near the bandgap energy, or both depending on the optoelectronic application. The following fabrication methods are discussed in the article: • PDBC fabrication procedures for spin-on dielectrics and commonly evaporated dielectrics to form the spacer layer. • Methods to selectively etch a parasitically absorbing back contact layer using metal point contacts as an etch mask. • Methods incorporating a dielectric etch through different process techniques such as reactive ion and wet etching.
format Online
Article
Text
id pubmed-9674894
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-96748942022-11-20 Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices Arulanandam, Madhan K. Steiner, Myles A. Tervo, Eric J. Young, Alexandra R. Kuritzky, Leah Y. Perl, Emmett E. Narayan, Tarun C. Kayes, Brendan M. Briggs, Justin A. King, Richard R. MethodsX Method Article The patterned dielectric back contact (PDBC) structure can be used to form a point-contact architecture that features a dielectric spacer with spatially distributed, reduced-area metal point contacts between the semiconductor back not recognized contact layer and the metal back contact. In this structure, the dielectric-metal region provides higher reflectance and is electrically insulating. Reduced-area metal point contacts provide electrical conduction for the back contact but typically have lower reflectance. The fabrication methods discussed in this article were developed for thermophotovoltaic cells, but they apply to any III-V optoelectronic device requiring the use of a conductive and highly reflective back contact. Patterned dielectric back contacts may be used for enhanced sub-bandgap reflectance, for enhanced photon recycling near the bandgap energy, or both depending on the optoelectronic application. The following fabrication methods are discussed in the article: • PDBC fabrication procedures for spin-on dielectrics and commonly evaporated dielectrics to form the spacer layer. • Methods to selectively etch a parasitically absorbing back contact layer using metal point contacts as an etch mask. • Methods incorporating a dielectric etch through different process techniques such as reactive ion and wet etching. Elsevier 2022-10-30 /pmc/articles/PMC9674894/ /pubmed/36411803 http://dx.doi.org/10.1016/j.mex.2022.101898 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Method Article
Arulanandam, Madhan K.
Steiner, Myles A.
Tervo, Eric J.
Young, Alexandra R.
Kuritzky, Leah Y.
Perl, Emmett E.
Narayan, Tarun C.
Kayes, Brendan M.
Briggs, Justin A.
King, Richard R.
Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices
title Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices
title_full Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices
title_fullStr Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices
title_full_unstemmed Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices
title_short Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices
title_sort fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices
topic Method Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674894/
https://www.ncbi.nlm.nih.gov/pubmed/36411803
http://dx.doi.org/10.1016/j.mex.2022.101898
work_keys_str_mv AT arulanandammadhank fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices
AT steinermylesa fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices
AT tervoericj fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices
AT youngalexandrar fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices
AT kuritzkyleahy fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices
AT perlemmette fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices
AT narayantarunc fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices
AT kayesbrendanm fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices
AT briggsjustina fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices
AT kingrichardr fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices