Cargando…
Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices
The patterned dielectric back contact (PDBC) structure can be used to form a point-contact architecture that features a dielectric spacer with spatially distributed, reduced-area metal point contacts between the semiconductor back not recognized contact layer and the metal back contact. In this stru...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674894/ https://www.ncbi.nlm.nih.gov/pubmed/36411803 http://dx.doi.org/10.1016/j.mex.2022.101898 |
_version_ | 1784833248552026112 |
---|---|
author | Arulanandam, Madhan K. Steiner, Myles A. Tervo, Eric J. Young, Alexandra R. Kuritzky, Leah Y. Perl, Emmett E. Narayan, Tarun C. Kayes, Brendan M. Briggs, Justin A. King, Richard R. |
author_facet | Arulanandam, Madhan K. Steiner, Myles A. Tervo, Eric J. Young, Alexandra R. Kuritzky, Leah Y. Perl, Emmett E. Narayan, Tarun C. Kayes, Brendan M. Briggs, Justin A. King, Richard R. |
author_sort | Arulanandam, Madhan K. |
collection | PubMed |
description | The patterned dielectric back contact (PDBC) structure can be used to form a point-contact architecture that features a dielectric spacer with spatially distributed, reduced-area metal point contacts between the semiconductor back not recognized contact layer and the metal back contact. In this structure, the dielectric-metal region provides higher reflectance and is electrically insulating. Reduced-area metal point contacts provide electrical conduction for the back contact but typically have lower reflectance. The fabrication methods discussed in this article were developed for thermophotovoltaic cells, but they apply to any III-V optoelectronic device requiring the use of a conductive and highly reflective back contact. Patterned dielectric back contacts may be used for enhanced sub-bandgap reflectance, for enhanced photon recycling near the bandgap energy, or both depending on the optoelectronic application. The following fabrication methods are discussed in the article: • PDBC fabrication procedures for spin-on dielectrics and commonly evaporated dielectrics to form the spacer layer. • Methods to selectively etch a parasitically absorbing back contact layer using metal point contacts as an etch mask. • Methods incorporating a dielectric etch through different process techniques such as reactive ion and wet etching. |
format | Online Article Text |
id | pubmed-9674894 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96748942022-11-20 Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices Arulanandam, Madhan K. Steiner, Myles A. Tervo, Eric J. Young, Alexandra R. Kuritzky, Leah Y. Perl, Emmett E. Narayan, Tarun C. Kayes, Brendan M. Briggs, Justin A. King, Richard R. MethodsX Method Article The patterned dielectric back contact (PDBC) structure can be used to form a point-contact architecture that features a dielectric spacer with spatially distributed, reduced-area metal point contacts between the semiconductor back not recognized contact layer and the metal back contact. In this structure, the dielectric-metal region provides higher reflectance and is electrically insulating. Reduced-area metal point contacts provide electrical conduction for the back contact but typically have lower reflectance. The fabrication methods discussed in this article were developed for thermophotovoltaic cells, but they apply to any III-V optoelectronic device requiring the use of a conductive and highly reflective back contact. Patterned dielectric back contacts may be used for enhanced sub-bandgap reflectance, for enhanced photon recycling near the bandgap energy, or both depending on the optoelectronic application. The following fabrication methods are discussed in the article: • PDBC fabrication procedures for spin-on dielectrics and commonly evaporated dielectrics to form the spacer layer. • Methods to selectively etch a parasitically absorbing back contact layer using metal point contacts as an etch mask. • Methods incorporating a dielectric etch through different process techniques such as reactive ion and wet etching. Elsevier 2022-10-30 /pmc/articles/PMC9674894/ /pubmed/36411803 http://dx.doi.org/10.1016/j.mex.2022.101898 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Method Article Arulanandam, Madhan K. Steiner, Myles A. Tervo, Eric J. Young, Alexandra R. Kuritzky, Leah Y. Perl, Emmett E. Narayan, Tarun C. Kayes, Brendan M. Briggs, Justin A. King, Richard R. Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices |
title | Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices |
title_full | Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices |
title_fullStr | Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices |
title_full_unstemmed | Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices |
title_short | Fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices |
title_sort | fabrication methods for high reflectance dielectric-metal point contact rear mirror for optoelectronic devices |
topic | Method Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674894/ https://www.ncbi.nlm.nih.gov/pubmed/36411803 http://dx.doi.org/10.1016/j.mex.2022.101898 |
work_keys_str_mv | AT arulanandammadhank fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices AT steinermylesa fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices AT tervoericj fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices AT youngalexandrar fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices AT kuritzkyleahy fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices AT perlemmette fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices AT narayantarunc fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices AT kayesbrendanm fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices AT briggsjustina fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices AT kingrichardr fabricationmethodsforhighreflectancedielectricmetalpointcontactrearmirrorforoptoelectronicdevices |