Cargando…

Software for segmenting and quantifying calcium signals using multi-scale generative adversarial networks

Cellular calcium fluorescence imaging utilized to study cellular behaviors typically results in large datasets and a profound need for standardized and accurate analysis methods. Here, we describe open-source software (4SM) to overcome these limitations using an automated machine learning pipeline f...

Descripción completa

Detalles Bibliográficos
Autores principales: Moghnieh, Hussein, Kamran, Sharif Amit, Hossain, Khondker Fariha, Kuol, Nyanbol, Riar, Sarah, Bartlett, Allison, Tavakkoli, Alireza, Baker, Salah A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674926/
https://www.ncbi.nlm.nih.gov/pubmed/36595928
http://dx.doi.org/10.1016/j.xpro.2022.101852
_version_ 1784833255692828672
author Moghnieh, Hussein
Kamran, Sharif Amit
Hossain, Khondker Fariha
Kuol, Nyanbol
Riar, Sarah
Bartlett, Allison
Tavakkoli, Alireza
Baker, Salah A.
author_facet Moghnieh, Hussein
Kamran, Sharif Amit
Hossain, Khondker Fariha
Kuol, Nyanbol
Riar, Sarah
Bartlett, Allison
Tavakkoli, Alireza
Baker, Salah A.
author_sort Moghnieh, Hussein
collection PubMed
description Cellular calcium fluorescence imaging utilized to study cellular behaviors typically results in large datasets and a profound need for standardized and accurate analysis methods. Here, we describe open-source software (4SM) to overcome these limitations using an automated machine learning pipeline for subcellular calcium signal segmentation of spatiotemporal maps. The primary use of 4SM is to analyze spatiotemporal maps of calcium activities within cells or across multiple cells. For complete details on the use and execution of this protocol, please refer to Kamran et al. (2022).(1)
format Online
Article
Text
id pubmed-9674926
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-96749262022-11-20 Software for segmenting and quantifying calcium signals using multi-scale generative adversarial networks Moghnieh, Hussein Kamran, Sharif Amit Hossain, Khondker Fariha Kuol, Nyanbol Riar, Sarah Bartlett, Allison Tavakkoli, Alireza Baker, Salah A. STAR Protoc Protocol Cellular calcium fluorescence imaging utilized to study cellular behaviors typically results in large datasets and a profound need for standardized and accurate analysis methods. Here, we describe open-source software (4SM) to overcome these limitations using an automated machine learning pipeline for subcellular calcium signal segmentation of spatiotemporal maps. The primary use of 4SM is to analyze spatiotemporal maps of calcium activities within cells or across multiple cells. For complete details on the use and execution of this protocol, please refer to Kamran et al. (2022).(1) Elsevier 2022-11-15 /pmc/articles/PMC9674926/ /pubmed/36595928 http://dx.doi.org/10.1016/j.xpro.2022.101852 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Moghnieh, Hussein
Kamran, Sharif Amit
Hossain, Khondker Fariha
Kuol, Nyanbol
Riar, Sarah
Bartlett, Allison
Tavakkoli, Alireza
Baker, Salah A.
Software for segmenting and quantifying calcium signals using multi-scale generative adversarial networks
title Software for segmenting and quantifying calcium signals using multi-scale generative adversarial networks
title_full Software for segmenting and quantifying calcium signals using multi-scale generative adversarial networks
title_fullStr Software for segmenting and quantifying calcium signals using multi-scale generative adversarial networks
title_full_unstemmed Software for segmenting and quantifying calcium signals using multi-scale generative adversarial networks
title_short Software for segmenting and quantifying calcium signals using multi-scale generative adversarial networks
title_sort software for segmenting and quantifying calcium signals using multi-scale generative adversarial networks
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674926/
https://www.ncbi.nlm.nih.gov/pubmed/36595928
http://dx.doi.org/10.1016/j.xpro.2022.101852
work_keys_str_mv AT moghniehhussein softwareforsegmentingandquantifyingcalciumsignalsusingmultiscalegenerativeadversarialnetworks
AT kamransharifamit softwareforsegmentingandquantifyingcalciumsignalsusingmultiscalegenerativeadversarialnetworks
AT hossainkhondkerfariha softwareforsegmentingandquantifyingcalciumsignalsusingmultiscalegenerativeadversarialnetworks
AT kuolnyanbol softwareforsegmentingandquantifyingcalciumsignalsusingmultiscalegenerativeadversarialnetworks
AT riarsarah softwareforsegmentingandquantifyingcalciumsignalsusingmultiscalegenerativeadversarialnetworks
AT bartlettallison softwareforsegmentingandquantifyingcalciumsignalsusingmultiscalegenerativeadversarialnetworks
AT tavakkolialireza softwareforsegmentingandquantifyingcalciumsignalsusingmultiscalegenerativeadversarialnetworks
AT bakersalaha softwareforsegmentingandquantifyingcalciumsignalsusingmultiscalegenerativeadversarialnetworks