Cargando…

Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties

The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without cr...

Descripción completa

Detalles Bibliográficos
Autores principales: E, Juncheng, Kim, Y., Bielecki, J., Sikorski, M., de Wijn, R., Fortmann-Grote, C., Sztuk-Dambietz, J., Koliyadu, J. C. P., Letrun, R., Kirkwood, H. J., Sato, T., Bean, R., Mancuso, A. P., Kim, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Crystallographic Association 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675053/
https://www.ncbi.nlm.nih.gov/pubmed/36411869
http://dx.doi.org/10.1063/4.0000169
_version_ 1784833277352214528
author E, Juncheng
Kim, Y.
Bielecki, J.
Sikorski, M.
de Wijn, R.
Fortmann-Grote, C.
Sztuk-Dambietz, J.
Koliyadu, J. C. P.
Letrun, R.
Kirkwood, H. J.
Sato, T.
Bean, R.
Mancuso, A. P.
Kim, C.
author_facet E, Juncheng
Kim, Y.
Bielecki, J.
Sikorski, M.
de Wijn, R.
Fortmann-Grote, C.
Sztuk-Dambietz, J.
Koliyadu, J. C. P.
Letrun, R.
Kirkwood, H. J.
Sato, T.
Bean, R.
Mancuso, A. P.
Kim, C.
author_sort E, Juncheng
collection PubMed
description The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without crystallization or chemical staining, has encouraged researchers to aim for increasingly higher resolutions with this technique. The currently achievable resolution of SPI is limited to the sub-10 nanometer range, mainly due to background effects, such as instrumental noise and parasitic scattering from the carrier gas used for sample delivery. Recent theoretical studies have quantified the effects of x-ray pulse parameters, as well as the required number of diffraction patterns to achieve a certain resolution, in a 3D reconstruction, although the effects of detector noise and the random particle orientation in each diffraction snapshot were not taken into account. In this work, we show these shortcomings and address limitations on achievable image resolution imposed by the adaptive gain integrating pixel detector noise.
format Online
Article
Text
id pubmed-9675053
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Crystallographic Association
record_format MEDLINE/PubMed
spelling pubmed-96750532022-11-20 Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties E, Juncheng Kim, Y. Bielecki, J. Sikorski, M. de Wijn, R. Fortmann-Grote, C. Sztuk-Dambietz, J. Koliyadu, J. C. P. Letrun, R. Kirkwood, H. J. Sato, T. Bean, R. Mancuso, A. P. Kim, C. Struct Dyn ARTICLES The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without crystallization or chemical staining, has encouraged researchers to aim for increasingly higher resolutions with this technique. The currently achievable resolution of SPI is limited to the sub-10 nanometer range, mainly due to background effects, such as instrumental noise and parasitic scattering from the carrier gas used for sample delivery. Recent theoretical studies have quantified the effects of x-ray pulse parameters, as well as the required number of diffraction patterns to achieve a certain resolution, in a 3D reconstruction, although the effects of detector noise and the random particle orientation in each diffraction snapshot were not taken into account. In this work, we show these shortcomings and address limitations on achievable image resolution imposed by the adaptive gain integrating pixel detector noise. American Crystallographic Association 2022-11-16 /pmc/articles/PMC9675053/ /pubmed/36411869 http://dx.doi.org/10.1063/4.0000169 Text en © 2022 Author(s). https://creativecommons.org/licenses/by/4.0/All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle ARTICLES
E, Juncheng
Kim, Y.
Bielecki, J.
Sikorski, M.
de Wijn, R.
Fortmann-Grote, C.
Sztuk-Dambietz, J.
Koliyadu, J. C. P.
Letrun, R.
Kirkwood, H. J.
Sato, T.
Bean, R.
Mancuso, A. P.
Kim, C.
Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties
title Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties
title_full Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties
title_fullStr Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties
title_full_unstemmed Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties
title_short Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties
title_sort expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties
topic ARTICLES
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675053/
https://www.ncbi.nlm.nih.gov/pubmed/36411869
http://dx.doi.org/10.1063/4.0000169
work_keys_str_mv AT ejuncheng expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT kimy expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT bieleckij expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT sikorskim expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT dewijnr expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT fortmanngrotec expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT sztukdambietzj expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT koliyadujcp expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT letrunr expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT kirkwoodhj expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT satot expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT beanr expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT mancusoap expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties
AT kimc expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties