Cargando…
Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties
The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without cr...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Crystallographic Association
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675053/ https://www.ncbi.nlm.nih.gov/pubmed/36411869 http://dx.doi.org/10.1063/4.0000169 |
_version_ | 1784833277352214528 |
---|---|
author | E, Juncheng Kim, Y. Bielecki, J. Sikorski, M. de Wijn, R. Fortmann-Grote, C. Sztuk-Dambietz, J. Koliyadu, J. C. P. Letrun, R. Kirkwood, H. J. Sato, T. Bean, R. Mancuso, A. P. Kim, C. |
author_facet | E, Juncheng Kim, Y. Bielecki, J. Sikorski, M. de Wijn, R. Fortmann-Grote, C. Sztuk-Dambietz, J. Koliyadu, J. C. P. Letrun, R. Kirkwood, H. J. Sato, T. Bean, R. Mancuso, A. P. Kim, C. |
author_sort | E, Juncheng |
collection | PubMed |
description | The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without crystallization or chemical staining, has encouraged researchers to aim for increasingly higher resolutions with this technique. The currently achievable resolution of SPI is limited to the sub-10 nanometer range, mainly due to background effects, such as instrumental noise and parasitic scattering from the carrier gas used for sample delivery. Recent theoretical studies have quantified the effects of x-ray pulse parameters, as well as the required number of diffraction patterns to achieve a certain resolution, in a 3D reconstruction, although the effects of detector noise and the random particle orientation in each diffraction snapshot were not taken into account. In this work, we show these shortcomings and address limitations on achievable image resolution imposed by the adaptive gain integrating pixel detector noise. |
format | Online Article Text |
id | pubmed-9675053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Crystallographic Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-96750532022-11-20 Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties E, Juncheng Kim, Y. Bielecki, J. Sikorski, M. de Wijn, R. Fortmann-Grote, C. Sztuk-Dambietz, J. Koliyadu, J. C. P. Letrun, R. Kirkwood, H. J. Sato, T. Bean, R. Mancuso, A. P. Kim, C. Struct Dyn ARTICLES The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without crystallization or chemical staining, has encouraged researchers to aim for increasingly higher resolutions with this technique. The currently achievable resolution of SPI is limited to the sub-10 nanometer range, mainly due to background effects, such as instrumental noise and parasitic scattering from the carrier gas used for sample delivery. Recent theoretical studies have quantified the effects of x-ray pulse parameters, as well as the required number of diffraction patterns to achieve a certain resolution, in a 3D reconstruction, although the effects of detector noise and the random particle orientation in each diffraction snapshot were not taken into account. In this work, we show these shortcomings and address limitations on achievable image resolution imposed by the adaptive gain integrating pixel detector noise. American Crystallographic Association 2022-11-16 /pmc/articles/PMC9675053/ /pubmed/36411869 http://dx.doi.org/10.1063/4.0000169 Text en © 2022 Author(s). https://creativecommons.org/licenses/by/4.0/All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | ARTICLES E, Juncheng Kim, Y. Bielecki, J. Sikorski, M. de Wijn, R. Fortmann-Grote, C. Sztuk-Dambietz, J. Koliyadu, J. C. P. Letrun, R. Kirkwood, H. J. Sato, T. Bean, R. Mancuso, A. P. Kim, C. Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties |
title | Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties |
title_full | Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties |
title_fullStr | Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties |
title_full_unstemmed | Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties |
title_short | Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties |
title_sort | expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties |
topic | ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675053/ https://www.ncbi.nlm.nih.gov/pubmed/36411869 http://dx.doi.org/10.1063/4.0000169 |
work_keys_str_mv | AT ejuncheng expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT kimy expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT bieleckij expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT sikorskim expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT dewijnr expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT fortmanngrotec expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT sztukdambietzj expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT koliyadujcp expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT letrunr expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT kirkwoodhj expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT satot expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT beanr expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT mancusoap expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties AT kimc expectedresolutionlimitsofxrayfreeelectronlasersingleparticleimagingforrealisticsourceanddetectorproperties |