Cargando…
Hyperspectral imaging-based classification of rice leaf blast severity over multiple growth stages
BACKGROUND: Rice blast, which is prevalent worldwide, represents a serious threat to harvested crop yield and quality. Hyperspectral imaging, an emerging technology used in plant disease research, is a stable, repeatable method for disease grading. Current methods for assessing disease severity have...
Autores principales: | Zhang, Guosheng, Xu, Tongyu, Tian, Youwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675130/ https://www.ncbi.nlm.nih.gov/pubmed/36403061 http://dx.doi.org/10.1186/s13007-022-00955-2 |
Ejemplares similares
-
Classification of rice leaf blast severity using hyperspectral imaging
por: Zhang, Guosheng, et al.
Publicado: (2022) -
Study on the Classification Method of Rice Leaf Blast Levels Based on Fusion Features and Adaptive-Weight Immune Particle Swarm Optimization Extreme Learning Machine Algorithm
por: Zhao, Dongxue, et al.
Publicado: (2022) -
Classification of soybean frogeye leaf spot disease using leaf hyperspectral reflectance
por: Liu, Shuang, et al.
Publicado: (2021) -
Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance
por: Siedliska, Anna, et al.
Publicado: (2021) -
Estimating the rice nitrogen nutrition index based on hyperspectral transform technology
por: Yu, Fenghua, et al.
Publicado: (2023)