Cargando…
Identifying driver modules based on multi‐omics biological networks in prostate cancer
The development of sequencing technology has promoted the expansion of cancer genome data. It is necessary to identify the pathogenesis of cancer at the molecular level and explore reliable treatment methods and precise drug targets in cancer by identifying carcinogenic functional modules in massive...
Autores principales: | Chen, Zhongli, Liang, Biting, Wu, Yingfu, Zhou, Haoru, Wang, Yuchen, Wu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675413/ https://www.ncbi.nlm.nih.gov/pubmed/36039671 http://dx.doi.org/10.1049/syb2.12050 |
Ejemplares similares
-
Multi-omics analysis identifies drivers of protein phosphorylation
por: Zhang, Tian, et al.
Publicado: (2023) -
KDM1A Identified as a Potential Oncogenic Driver and Prognostic Biomarker via Multi-Omics Analysis
por: Li, Lingyue, et al.
Publicado: (2021) -
DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data
por: Zhang, Shao-Wu, et al.
Publicado: (2022) -
Validation of a multi-omics strategy for prioritizing personalized candidate driver genes
por: Liang, Li, et al.
Publicado: (2016) -
DriverDBv3: a multi-omics database for cancer driver gene research
por: Liu, Shu-Hsuan, et al.
Publicado: (2020)