Cargando…

Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers

Transcriptome-wide association studies (TWAS) have successfully discovered many putative disease susceptibility genes. However, TWAS may suffer from inaccuracy of gene expression predictions due to inclusion of non-regulatory variants. By integrating prior knowledge of susceptible transcription fact...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Jingni, Wen, Wanqing, Beeghly, Alicia, Chen, Zhishan, Cao, Chen, Shu, Xiao-Ou, Zheng, Wei, Long, Quan, Guo, Xingyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675749/
https://www.ncbi.nlm.nih.gov/pubmed/36402776
http://dx.doi.org/10.1038/s41467-022-34888-0
Descripción
Sumario:Transcriptome-wide association studies (TWAS) have successfully discovered many putative disease susceptibility genes. However, TWAS may suffer from inaccuracy of gene expression predictions due to inclusion of non-regulatory variants. By integrating prior knowledge of susceptible transcription factor occupied elements, we develop sTF-TWAS and demonstrate that it outperforms existing TWAS approaches in both simulation and real data analyses. Under the sTF-TWAS framework, we build genetic models to predict alternative splicing and gene expression in normal breast, prostate and lung tissues from the Genotype-Tissue Expression project and apply these models to data from large genome-wide association studies (GWAS) conducted among European-ancestry populations. At Bonferroni-corrected P < 0.05, we identify 354 putative susceptibility genes for these cancers, including 189 previously unreported in GWAS loci and 45 in loci unreported by GWAS. These findings provide additional insight into the genetic susceptibility of human cancers. Additionally, we show the generalizability of the sTF-TWAS on non-cancer diseases.